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Abstract

One of the great challenges in the devel opment of passive dynamic
walking robots (useful for an understanding of human gait and for
future applications in entertainment and the like) is the stabiliza-
tion of three-dimensional motions. This is a difficult problem due
to the inherent interaction between fore—aft motions and sideways
motions. In this paper we propose a simple solution. Conceptually,
one can avert a sideways fall by steering in that direction, similar to
skateboards and bicycles. We propose to implement this concept for
walking robots by the introduction of an ankle joint that kinemati-
cally couples lean to yaw. The ankle joint has an unusual orienta-
tion; its axis points forward and downward, without any left—right
component. The effect of the ankle joint is investigated in a simple
three-dimensional model with threeinternal degrees of freedom: one
at the hip and two at the ankles. It has cylindric feet and an actuator
at the hip joint, which quickly moves the swing leg to a preset for-
ward position. The simulations show that it is easy to find a stable
configuration, and that the resultant walking motion is highly robust
to disturbances. Smilar to skateboards and bicycles, there exists a
critical velocity (as a function of the parameters) above which sta-
ble walking motions occur. The critical velocity can be lower for a
more vertical ankle axis orientation. As an additional benefit, the
ankle joint allows a straightforward implementation for steering; a
simple sideways offset of the mass distribution will cause the model
to gently steer in that direction. The results show great potential for
the construction of a real-world prototype with the proposed ankle
joint.
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1. Introduction

Passive dynamic walking (McGeer 1990) is a well-known
concept for the design of energy efficient bipedal (two-legged)
robots with a natural-looking gait. In their purest form, such
walkers are fully unactuated (and thus uncontrolled), while
walking stably down a shallow slope. The swing leg moves
forward at its natural frequency as a passive pendulum while
the stance leg rotates forward as an inverted pendulum, usu-
ally rolling on an arc-shaped foot. For passive walkers with
lateral constraints (i.e., only possessing two-dimensional (2D)
dynamics) it has been shown that stable walking motions ex-
ist for a wide range of parameter values for prototypes both
with and without knees. Moreover, it is straightforward to add
elementary hip actuation for level-floor walking with a con-
siderable robustness (Wisse et al. 2005) and to add an upper
body through the use of a bisecting hip mechanism (Wisse,
Schwab, and van der Helm 2004).

One of the great challenges is to find the key to stability in
three dimensions. In addition to the fore—aft motions (pitch),
in three dimensions also sideways motions (lean) and rotations
around the vertical axis (yaw) are possible. Itis the interaction
between all three of these that renders the problem of three-
dimensional (3D) stability so difficult. Consequently, most of
the known solutions to this problem are successful because
they reduce the interaction in one way or another, as follows:

* ignore yaw by assuming sufficient yaw resistance in the
foot contact (Kuo 1999; Piiroinen 2002);
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« apply large moments of inertia against yaw (Coleman -
and Ruina 1998; Coleman et al. 2001); wx""\._r:

« walk with short steps (Coleman and Ruina 1998; van g
der Linde 2001; Tedrake et al. 2004);

« counteract yaw with a counter-rotating body (Wisse and
Schwab 2001) or with counter-swinging arms (Collins, h
Wisse, and Ruina 2001).

In this paper, however, we aim not at a reduced interaction
between the degrees of freedom, but conversely we show how
a purposefully induced interaction between lean and yaw can
actually benefit the stability of the walking motion.

First, in Section 2 we introduce the main idea through the
related problems of skateboard and bike stability. Then, in
Section 3 an elementary walking model is introduced, fol-
lowed by the simulation results in Section 4 and the discussion
and conclusion in Sections 5 and 6. Fig. 1. Parameters of the skateboard model.

2. Advantageous L ean-to-yaw Coupling

In 3D walking, side-to-side tipping (i.e., excessive leaning)
is a major stability hazard. One of the most effective con-
trol opportunities is lateral foot placement—placing the next
swing leg sideways to avert a fall in that direction (Kuo 19990 steer, here we show how this also provides stability. The
Donelan et al. 2004). The key insight in this paper is that sudfllowing analysis is a simplified version of the skateboard
lateral foot placement can be obtained by steering, i.e., yagability analysis by Hubbard (1979).
Rotation around the vertical axis by itself has no effect, but The board and wheels are assumed to be massless and the
in combination with forward progression, it suddenly affect§€ight between the board and the floor is neglected. Also, we
the lateral foot placement. In other words, if during a forwar@ssume that there is always contact between all four wheels
walking motion one steers to the left, then automatically thand the floor; the model cannot tip over. The rider is modeled
next footfall will be placed more to the left side. Thus, yawaS @ single point mass at heightabove the floor, rigidly
can be used for side-to-side stability, as long as there isaffached to the skateboard. The distance between the front
forward progression. Stability can be obtained if the unstabfd rear wheels is). The steering axes are mounted at an
lean is either kinematically or dynamically coupled to the ya@nglea with respect to vertical such that sideways leaning
motion. of the rider results in steering in that direction. The steering
In this section, we investigate two known examples of suchxes are equipped with rotational springs with stiffriesshe
advantageous lean-to-yaw coupling: a skateboard and a bigjodel has fore—aft and sideways symmetry.
cle. These examples represent two different forms of lean-to- The skateboard is a non-holonomic system, i.e., it cannot
yaw coupling. The skateboard has a kinematic coupling; yaiP sideways but it can move to a sideways position by a
and lean are combined in a single degree of freedom, as &eduence of steering actions. Therefore, it has a smaller ve-
plained in Section 2.2. The bicycle has a dynamic couplind@City space (lean and ride) than coordinate space (leamd
besides the sideways lean degree of freedom of the bicyc}gposition and orientation in plane). Here we consider the lin-
there is a separate degree of freedom for the steering fréttrized equations of motion in which the forward velocity can
fork. The bicycle study is presented in Section 2.3. Note th&€ considered as a parameter. The linearized model only has
the remainder of the paper addresses a kinematic lean-to-yade degree of freedom, i.e., the sideways lean angle of the
coupling for walking machines, for which the skateboard igder ¢ (Figure 2). With zero forward velocity, the behavior

the most relevant analogy. equals that of an inverted pendulum with a destabilizing grav-
ity torque and a stabilizing spring torque. Although the two
2 1. Skateboard springs act on the tilted joints, in their projected torques the

tilt angle« cancels out.
In the skateboard, the two sets of wheels are attached to theWhen riding with a velocityv, the skateboard makes a
board via tilted steering axes (Figure 1). Although the maiturn if there is a non-zero legh The velocity together with
purpose of this construction is to give the rider the abilityhe radius of curvature. (Figure 2) determine the sideways
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Fig. 2. Variables for the linearized skateboard model: left, a
rear view; right, a top view.
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Fig. 3. Bicycle model together with the coordinate system,
the degrees of freedom, and the parameters, from Schwab,
Meijaard, and Papadopoulos (2005).
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Therefore, the total system equation describing the linearizescent bicycle benchmark publication by Schwab, Meijaard,
model becomes and Papadopoulos (2005).

omh The mechanical model of the bicycle consists of four rigid

mh?0 + <2k — mgh + vz) 9 =0. (2) bodies: the rear frame with the rider rigidly attached to it,

w tana the front frame consisting of the front fork and handle bar

This result can be interpreted as follows. If the spring stiffne%ssembly’ and the two knife-edge wheels. These bodies are

k is high enough to counteract the inverted pendulum instgw_terconnected by revolute hinges at the steering head be-
bility, then the system is never unstable. If not, then it ca een the rear frame and the front frame and at the two wheel

always be made stable by its velocity. The larger the angle ubs. The contact bgtween the stiff non-slipping whee_ls a’?d
is, the higher the required velocity. The critical velocity is the flat level _Surf"?‘ce is modeled by holon_omlc constraints in
the normal direction and by non-holonomic constraints in the
longitudinal and lateral directions. There is no friction, apart
(3) from the idealized friction between the non-slipping wheels
and the surface, no propulsion and no rider control, the so-

Note that the system can at best only be marginally stableglled hands free coasting operation.
The introduction of damping in the steering axis could make The mechanical model of the bicycle has three degrees of
it asymptotically stable. Also note that eq. (3) suggests thiieedom: the lean angigof the rear frame, the steering angle
it is best to make angle equal to zero. In real life there is 8, and the rotation, of the rear wheel with respect to the rear
a lower limit toor dependent on the width of the skateboardrame. The forward speedis= —6, R,,, wherer,, is the ra-

because of the unilateral contact between the wheels and ¢higs of the rear wheel. Due to the non-holonomic constraints,
floor. there are four extra kinematic coordinates which describe, to-

gether with the degrees of freedom, the configuration of the
system (Schwab and Meijaard 2003). The four kinematic co-
ordinates are taken here as the Cartesian coordinaedy
Everybody knows that a bicycle is highly unstable at rest buif the rear-wheel contact point, the yaw angleof the rear

can easily be stabilized at a moderate speed. Moreover, sofreme, and the rotatiofi, of the front wheel with respect to
uncontrolled bicycles can be asymptotically stable in a certathe front frame. The dimensions and mechanical properties of
speed range. To demonstrate this phenomenon, we consitterbenchmark model are those of a regular 18 kg bicycle with
one of the simplest bicycle models: an uncontrolled bicyclaen average 76 kg rider. For the complete set of parameters,
with a rigid rider attached. This is an example of a dynamiwe refer to Schwab, Meijaard, and Papadopoulos (2005).
cally coupled lean-to-yaw motion due to the hands-free op- In this study, we consider the linearized model of the bi-
eration of the bicycle. The following analysis is based on eycle at constant forward speed. In the linearized model only

(mgh — 2k)w tana
Umin - .
2mh

2.2. Bicycle
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two degrees of freedom remaiq,= (¢, §)7. The equations 1%8( N — Im(N) --- [Us] B}
of motion are 7
8 7
Mg +[C1l-v]q+ [KO+K2-v¥g=f, 4) 2 //
Q
with a constant mass matri¥], a “damping” matrix,C1, % \\ Weave prad
which is proportional to the forward speedand a stiffness 54 _J\\< 1.7
matrix, which has a constant palkQ, and a partk 2, which T 2 I S
is proportional to the square of the forward speed. Unfortu- 77 \
nately the entries in the matrices are too complex and lengthy o \“><
to express in a concise symbolic form. The benchmark pa- l 2 Pl
per (Schwab, Meijaard, and Papadopoulos 2005) does present , \\\
these entries in an algorithmic manner. Simplification ofthese 2§ -4 Capsi
expressions by neglecting so-called minor terms, as has been 2 6 N apsize
done by others in the past, would lead to incorrect results. \\
Therefore, we choose here to present typical values for the -8 N
entries in the matrices, i.e., -10 AN
01 2 3 4 5 6 7 8 9 10
M — |: 80.812 23234i| Vi Ve v [m/s]
2.3234 Q30127 |’
- 0 33774 Fig. 4. Eigenvalues. frpm the Iineari_zed stability analysis
Cl= _0.84823 17070 ] , for the benchmark bicycle from Figure 3 and Schwab,
L ' (5) Meijaard, and Papadopoulos (2005) where the solid lines
[ —79412, —25739 correspond to the real part of the eigenvalues and the dashed
KO = _25739 -8.1394 ] ’ line corresponds to the imaginary part of the eigenvalues,

in the forward speed range of 8 v < 10 m s. The zero
Ko_ | O 76406 ] crossings of the real part of the eigenvalues are for the weave

| 0 26756 |’ motion atv, = 4.3 m s and for the capsize motion at
g =61m st, giving the bicycle an asymptotically stable
af, <v < v..

where we use the standard units kg, m, and s. The fdrce
on the right-hand side are the action-reaction lean mometR€€d range
between the fixed space and the rear frame, and the action—
reaction steering moment between the rear frame and the front
frame. The latter is the torque that would be applied by a
rider’s hands or a controller. Inthe present study of an ordinary
uncontrolled bicycle, both of these moments are taken to be
zero. a non-oscillatory motion in which, when unstable, the bicycle
To investigate the stability of the upright steady motionjust falls over like a capsizing ship. The weave motion is an os-
we start from the homogeneous linearized equations of moilatory motion in which the bicycle sways about the headed
tion (4). Next we assume for the small variations in the dedirection. Both eigenmodes show the dynamically coupled
grees of freedom an exponential motion with respect to timkan-to-yaw motion. At very low speed,9 v < 0.7 m s},
which then takes the form = q,exp(rt). This leads to an there are two positive and two negative eigenvalues which
eigenvalue problem for which in this case the characterist@orrespond to an inverted pendulum-like motion of the bicy-
equation is a polynomial in the eigenvaluesf order four. cle. Atv = 0.7 m s two real eigenvalues become identical
The coefficients in this polynomial are themselves polynand start forming a conjugated pair; this is where the oscilla-
mials in the forward speed, since some coefficients of the tory weave motion emerges. At first, this motion is unstable
linearized equations of motion have a linear or quadratic deut abovev,, = 4.3 m s the weave motion becomes stable.
pendency on. The solutions of the characteristic polynomialAfter this bifurcation, the frequency of the weave motion is
for a range of forward speeds are the root loci of the eigeadmost proportional to the forward speed. Meanwhile the cap-
valuesai, which are shown in Figure 4. Eigenvalues with aize motion, which was stable for low speed, becomes mildly
positive real part correspond to unstable motions, whereasstable at. = 6.1 m s*. With further increase in speed, the
eigenvalues with a negative real part result in asymptoticalgapsize eigenvalue approaches zero.
stable motions. Complex conjugated eigenvalues give rise to We conclude that the bicycle model shows a dynamic lean-
oscillatory motions. to-yaw coupling resulting in an asymptotically stable motion.
Forthe bicycle model there are two significant eigenmodeSjmilar to the skateboard, with its kinematic coupling, a min-
called capsize mode and weave mode. The capsize motiorinsal forward velocity is required for this stabilizing effect.
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u, u, Y g sumed to be sufficient to prevent sideways tipping over the
edge. The feet in the model have a finite size but no inertia, so
the foot of the swing leg contributes to the system dynamics
only as a point mass. For the detection of heel contact, the
swing foot is assumed to preserve its parallel orientation with
respect to the floor surface. Heel contact itself is modeled as
a rigid plastic impact with immediate and full contact to the
floor, while at the same instant the previous stance foot loses
contact.

The model walks down a shallow slope All parame-
ters are scaled so that gravigythe leg lengtt and the total
robot mass (&,,,) are all equal to onéThe simulation re-
sults can be scaled back to obtain results, for example, for
an earthly gravity regime. This scaling exposes the minimal
set of adjustable parameters: hip widtifoot radius-, ankle
mounting anglex, and slope anglg as listed in Table 1. Ad-
Fig. 5. Degrees of freedom (left) and parameters (right) afitionally, a (small) torque can be exerted at the hip joint to
our simple walking model with ankle joints that couple leaitmove the swing leg quickly to a forward position, a feature
to yaw. that will prove necessary for stable walking (Section 4).

3.1. Equations of Motion

The equations of motion for the system without foot contact
3. Simplest Passive Walking M odel with constraints were generated with the method of virtual power
L ean-to-yaw Coupling as described in Schwab and Wisse (2001), where the 12 de-

pendent degrees of freedorfx (y, z} for each point mass)

The purpose of the simulation model is to show the essentlypre expressed in terms of the nine generalized coordinates

dynamic effects of kinematic lean-to-yaw coupling in walking > ¥»» 21 U1---is}. In addition, there are three coordinates
systems. The simplest model for this purpose is a 3D coustyt change value only once per step: the foot roll-off direc-
of Garcia’s 2D ‘simplest walking model’ (Garcia et al. 1998) 10N ¢ and the foot contact locatiofx., z.}. The five foot
which consisted of one finite point mass at the hip joint, tw§ONtact constraints are expressed as follows.

infinitesimally small point masses at the feet, and massless; g yaw: the foot cylinder axis must remain perpendic-
rigid ImIgs in between, mt_erconne_cted with afrlcfuonless _hlnge ular to its initial heading.

at the hip. Our model (Figure 5) is a 3D extension of this; the

hip has gained a finite width and the hip mass is divided into 2. No lean: the foot cylinder axis must remain perpendic-
two point masses at the extremes of the massless hip axle. For ular to the normal of the floor.

numerical reasons, the point masses at the feet of our model
are not infinitesimally small but just very small. The degrees
of freedom are the coordinates and the yaw and lean angles of
the center of the hip axlex;,, y,, zx, u1, u,}, the two leg pitch
angles{us, u,}, and the two ankle angldss, ug}. The ankle
axes are mounted in the-y-plane at an anglke with respectto 5. No forward slip: the forward disposition should match
the vertical. Note that the ankle axes have no componentinthe  with the pitch angle.

z-direction, unlike conventional robot designs or the human - - ——— - -

“ ” . . . 1. Due to the applied scaling, most quantities in this text are dimensionless,
ankl?' The n_ormal ankle funCt'onal'ty' rOta“?” around thQ/vhich explains the frequent use of seemingly incomplete statements such as
z-axis, is realized by means of the roll-off motion of the feetq velocity of 0.36".

The feet are (partial) cylinder shells with the cylinder axis
perpendicular to the ankle axis. They are mounted such that
the cylinder axis is in the leg (not displaced forward or back- .
ward) and that the total Iegglle(ngth (WF;wen standing upright)l?gaple 1_‘ Parametersand Their Default Values
independent of the cylinder radius. The foot contact is mod-HiP width d 0.3

3. Contact with plane: the center of the foot cylinder axis
must remain a distanae(foot radius) above the floor.

4. No lateral slip.

eled as a perfectly rigid cylinder—plane contact with only one 0Ot radius - r 0.5
degree of freedom: pitch in a direction perpendicular to the”\Nklé mounting angle o 0.55
Slope angle y 0.01

cylinder axis. The width of the feet is not specified and is as-
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These constraint conditions (either for the right foot or fofive foot contact constraints to four independent degrees of
the left foot, depending on which is in stance phase) wefeeedom when one foot is in contact with the floor. The angle
added to the equations of motion to obtain a system of diffeof the swing foot is not connected to any inertia, so this leaves
ential algebraic equations, which solves for the nine generalnly three independent degrees of freedom and thus six states:
ized coordinates and five Lagrange multipliers (one unknowiins, u4, us, i3, i, it} for left stance. The Poincaré section
contact force or torque per constraint condition). The impacemoves one state (one of the hip angles) so that there would
equations for the heel strike event are derived in the same sie- five independent initial conditions. In addition, there are
tematic manner (Schwab and Wisse 2001), in which the fitharee coordinates that change only once per step;, ande.

foot contact constraints serve as contact conditions where iffhe linear coordinates andz, are not relevant to the walking

pulsive forces can occur. motion, but the foot roll-off directiog is, so it must be added
to the set of independent initial conditions. Therefore, in total
3.2 Simulation Procedure there are six relevant independent initial conditions as listed
in Table 2.

The simulation procedure is a succession of simulations of
walking steps which begin and end at the instant immediatel
after heel strike. Within one step, the system of differential”

glgebralc equations Is numgncally mtegratgd until heel Smﬁ% this section we present the behavior and stability of five
is detected, followed by an impact calculation. The end state

of the walker is then used as the starting state for a secop. ulation m(_)dels O.f increas_ing complex_ity. The first moqlel
step. After the second heel strike, the end staed(, ,,) is igure 6(A)) is Garcia’s 2D ‘simplestwalking model’ (Garcia

compared to the initial state of the walkdg(q},) and the et al. 1998). This fully passive model has straight legs with

entire two steps can be summarized as the non-linear stri%%!ntfeet (withinfinitesimally small point masses) and a large

functionSwhich maps the end states on the initial states: p_0|r_1t mass at the hlp. The secon_d model (Flg_ure 6(B)) is
similar, except that it has arc feet instead of point feet. The

Qi 9. third.rrllodel (Figure 6(C)) is_equal tq the second model except
[ Quia ] =S ([ d, ]) . (6) thatitis 3D. It has no hip width but it can move out-of-plane.
Also, this model is equipped with the proposed ankle joints.
Note that we do not apply the common procedure of statéhe fourth model (Figure 6(D)) differsin thatit has a non-zero
mirroring at the end of the step, which is used in most 2ibip width, and the fifth model (Figure 6(E)) has an additional
analyses to confine the simulation to only one walking stegctuator at the hip joint (Wisse et al. 2004).
instead of two consecutive steps.
According to the Poincaré mapping method, if the end statg1. Fully Passive Model
equals the initial state, we have found a fixed point represent- ) ) )
ing a cyclic walking motion. The stability is determined by thé>arcia etal. (1998) researched the simplest walking model in
effect of deviationg, in the initial state on deviations,,, WO dimensions that could still demonstrate a passive walk-
in the end state. For small deviations, we assume linear#)d motion (Figure 6(A)). The model consists of three point
around the fixed point, such that masses, one of mass 1 at the hip and two infinitesimally small
point masses at the feet, with rigid, massless links as legs in-
S terconnected with a frictionless hinge. Therefore, it has two
- 3(q,, G,) ™ degrees of freedomwhenin stance phase andtk@s2 = 3
independent initial conditions for a step starting with the rear
J is the Jacobian of the stride functi&and is determined by |eg just leaving the floor. With its point feet (no radius of cur-
performing the simulation procedure once for all dEViationﬁature)' the simplest walking model is a special 2D case of
€,, one for each independent initial condition. The stabilityhe model presented in this paper.
characteristics are described by the eigenvaluethe Jaco-
bianJ; if all are smaller than 1 in magnitude, errors decay over

ides. Th ller the ei I he f h
subsequent strides. The smaller the eigenvalues, the aSIeTaEIeZ. Fixed Point I nitial Conditionsfor L eft Stance, Valid

Simulation Results

€,.1 = Je, with J

walker converges toward the fixed point. Note that the definj-

tion of eigenvalues here differs from Section 2; the analysis o the Parameter Valuesin Tablel

the walking model is discrete(l < A < 1is stable) whereas 00t heading 2 0.0016
the skateboard and bicycle analysis is continudus<(0 is ~ Stance leg angle Us 0.155
stable). Stance ankle angle Ug —0.0041
For the stability analysis, there are six relevantindependenpt2nce g angular velocity tig —0.42
initial conditions {q, 4}, for the start of a stride. The nine Stance ankle angular velocity Us —0.070

independent coordinates for the free model are reduced hy'Vind 1€g angular velocity liy —0.42
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—————— arc foot model (Fig. 6B), at Y = 0.00058 (rad)
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Fig. 6. Models with increasing complexity: (A) 2D point foot
walker (Garcia et al. 1998); (B) 2D arc foot walker; (C) flat
3D walker (passive or active); (D) passive 3D walker with
finite hip width; (E) active 3D walker.
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The model shows a stable walking pattern when walking on
a shallow slope with a downward angle smaller than 0.015rddd. 7. Leg angles versus time for a point foot model
(Garcia et al. 1998). For example, Table 3 presents the eigdfrigure 6(A)) and an arc foot model (Figure 6(B)) with a foot
values for the cyclic motion that exists for a typical slope offadiusr = 0.5. The displayed cyclic walking motion (only
0.004 rad. It has been shown, however, that the simplest wafk2e step is shown) is valid both for 2D models and for 3D
ing model is highly susceptible to disturbances (Schwab armaodels with zero hip width (Figure 6(C)).
Wisse 2001), and that this sensitivity can be greatly reduced
by the application of arc feet with a substantial radius (Wisse
and van Frankenhuyzen 2003). Therefore, we continue this
paper with a model with arc feet with a radius of (a somewhais it only influences 3D motions. The small region of stable
arbitrarily chosen) 0.5 times the leg length. For comparisoralues fore is located around the maximal stance leg angle
within this paper and with previous publications (Schwab an@.15 rad; see Figure 7). This means that, during the walking
Wisse 2001; Wisse et al. 2004), the arc foot model is givemotion, the orientation of the ankle axis will move fron80
the same step length and approximately the same velocitytasO rad with respect to an absolute reference frame, i.e., it
the point foot model by adjustment of the slope angle. Theill have a completely vertical orientation at the end of each
step length is determined by the initial stance leg aBgl®n  step. Obviously, in this orientation the ankle joint is no longer
a slope ofy = 0.004 rad, the point foot model has a limita “lean-to-yaw” coupling, but it has become a pure yaw de-
cycle with6, = 0.15 rad. The arc foot walker only needs agree of freedom. This eliminates the stabilizing effect for two
slope ofy = 0.00058 rad for the same step length, i.e., iteasons. First, there is no coupling so the yaw motion is not
is about seven times more efficient while walking at the apelated to the rest of the walking motion, resulting in uncor-
proximate same velocity (see Figure 7). The eigenvalues haegated (and thus destabilizing) rotations around the vertical
moved closer to 1 and thus do not suggest a stability improvaxis. Secondly, more severely, the loss of the lean degree of
ment (Table 3). However, we performed a crude analysis fleedom in the ankle joint will most likely result in sideways
the basin of attraction which showed that the arc foot walkeipping over on the inside edge of the foot, unless very wide
can handle deviations from the initial conditions of 8% verfeet are applied. Recall that a similar lower boundary exists
sus 2% for the point foot walker, indicating a better practicdbr a realistic skateboard model.
applicability of the model. We hypothesized that a finite hip width> 0 might add

An interpretation of the eigenvectors corresponding to th®e stability. A graph of the eigenvalues as a function of both
last set of eigenvalues in Table 3 has shown that the first thrikge ankle orientatior and the hip widthd is sketched in
eigenvalues are indeed only related to the fore—aft motiorisigure 9. The sketch is based on a number of cross-sections
whereas the last three eigenvalues are related to 3D motionghe parameter space afandd. The stable region fow
in which both the sideways and fore—aft direction are presemarrows down with an increasinfup tod ~ 0.05, beyond
The most important conclusion to be drawn from Table 3 i&hich no stable solutions were found for any A search
thatthere exists a stable 3D walking motion for our model withip tod = 0.2 provided ever increasing eigenvalues, so we
no hip width and an almost upright ankle axis£ 0.15rad). extrapolate the result to conclude that no stable 3D walking

Further research shows that the eigenvalues are highly semstions exist for a hip width of more than 0.05 times the leg
sitive to the orientation of the ankle axis and that only a smakngth.
region leads to stable motions (see Figure 8). The first three Another hypothesis was that a steeper slope mightimprove
eigenvalues are not a function of the ankle axis orientatidhe stability; on a steeper slope, the passive walker will take
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Table 3. Eigenvalues of the Cyclic Walking M otion for the Simplest Walking M odel with Point Feet, a 2D Walker with

Arc Feet, and a Flat (d = 0) 3D Walker with Ankle Axes Oriented at « = 0.15rad
2D Point 2D Arc 3D with
Foot Walker Foot Walker Arc Feet
(Figure 6(A)) (Figure 6(B)) (Figure 6(C))
Eigenvalue ay = 0.004 aty = 0.00058 aty = 0.00058

A —-0.3+0.27 0.69 0.69

Az —-0.3-0.27 0.12 0.12

A3 0 0 0

As - - 0.72

As - - 0.51

A6 - - 0

Note that all eigenvalues result from two successive steps, i.e., one stride.
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Stable range | & (2d) Fig. 9. A sketch of the dependency of the eigenvalues as
a function of ankle joint orientationr and hip widthd for

Fig. 8. Typical plot of the absolute values of the eigenvalued Model (Figure 6(D)) with foot radius = 0.5 and slope
|| as a function of the ankle joint orientatienfor a fully ~angley = 0.00058 rad. The left face of the figure is equal to

passive 3D model (Figure 6(C)). This plot is generated withigure 8.
hip widthd = 0 and foot radius = 0.5, walking on a slope

of y = 0.00058 rad.

These marginal stability results, together with the required
vertical orientation of the ankle axis, indicate that the fully
passive model is not sufficiently applicable for real-world pro-

larger steps and thus walk faster, and the skateboard and bﬁ? pes, and warrant a search for a model with stable behavior
models predict a beneficial stability effect for higher velociO" larger values o& andd.

ties. However, the simulation has shown only marginal effects.

Up to the maximal slope of 0.046 rad beyond which no stgr > Modd with Hip Actuation

ble motions exist, the 3D graph in Figure 9 remains similar
in shape. The stable region shifts to higher valueg afong In this subsection we propose to improve the overall (3D)

with the increase in step length. For example, a slope increasalking behavior through the addition of a stabilizing feature
from 0.00058 to 0.004 rad causes the initial stance leg andteat was originally intended for 2D machines. In two dimen-
to increase from 0.15 to 0.29 rad and also shifts the staldens, the most persistent failure is a fall forward, which can
values fore from around 0.15 to around 0.29 rad. be averted by simply accelerating the swing leg to bring it
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Fig. 10. Typical plot of the absolute values of the eigenvalugeas a function of the ankle joint orientatianfor a 3D model
with simple swing leg control (Figure 6(C)). This plot is generated with hip witith O and foot radiug = 0.5, walking on
a slope ofy = 0.00058 rad (left) angr = 0.01 rad (right). The two graphs exemplify that the upper boundary focreases
with an increasing ; the steeper the slope, the larger the region of stability. Note the difference in scale of the two graphs.

quickly to a forward position and subsequently keeping it The stable region in Figure 10(B) has two independent

there (Wisse et al. 2004). This simple form of swing leg corboundaries. The lower boundary feris directly related to

trol can be implemented on our 3D model without energthe step length; i& is lower than 0.15, the ankle axis would

implications; the swing leg is nearly massless, so any contnaach a vertical orientation at the end of the step which leads to

action can be applied (almost) without reaction torques to tltirectional instability. With a fixed step length due to the swing

rest of the model. Therefore, the model still requires a dowiheg controller, this lower boundary faris more or less static.

hill slope for a sustained walking motion. This also means thathe upper boundary is directly related to the slope angle; the

the swing leg can be moved arbitrarily fast; in the remaindesteeper the slope, the highecan be. Or, in other words, for

of this paper, the swing leg is assumed (and simulated) alwaggjiven value ofx the slope angle must be above a certain

to be in the forward position before heel strike occurs. critical value for stable walking. In Figure 11 this is depicted
We can arbitrarily set the forward angle that the swing lefpr « = 0.55, the upper boundary from Figure 10(B). Note the

is quickly moved to. Let us maintain the value of 0.15 rad asorrelation between the two graphs; the upper boundagy

initial stance leg angle in accordance with the passive moddl$5 in Figure 10(B) corresponds to the stability boundary

described earlier. The controller therefore has to move the= 0.01 in Figure 11.

swing leg quickly to an inter-leg angle 0f20.15 = 0.3 rad. With respect to the passive model, the active model has a

The immediate effect of the controller is that disturbances anuch larger stable region; when walking on a slope of

the initial swing leg velocity do not affect the end state, an6.01 rad, the ankle orientation angle can be anything between

thus one of the eigenvalues of the model becomes zero. 0.15 < « < 0.55 rad for stable walking. This gives good
Looking at the behavior foy = 0.00058, there seems to hopes for models with a finite hip width. Figure 12 presents

be little difference between the active model (Figure 10(A)the eigenvalues as a function of bethand the hip width?,

and the passive model (Figure 8). The reason is that the mavhere the left front plane equals Figure 10(B). Apparently, for

improvements are to be found for larger slopes. For the actitlee active model an increase of the hip width is even beneficial

model, a change of slope does not lead to a change of stegthe stability, in sharp contrast with the passive model.

length, while the swing leg control ensures that the model

cannot fall forward, so any arbitrarily steep slope can be used. - ]

These two effects of the swing leg control together result ift3- Stability Versus Velocity

a much more favorable behavior. In contrast to the passi

model, for the active model an increase/ofloes not lead to

atranslation of the stable region f@but rather to an increase

of this region, shown in Figure 10(B).

¥or the active model, itis easy to find a parameter combination
that results in stable walking. Figure 11 basically suggests
that for any parameter combination, one can find stability by
increasing the slope angle past a critical value. This effect
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Y (rad) Fig. 13. Stability regions and walking velocity as a function

of the slope angler and the foot radiug for an active, flat
Fig. 11. Typical plot of the absolute values of the eigenvaluesb model (Figure 6(C)). The velocity is determined by the
|A| as a function of slope angjefor a 3D model with simple parameters: andy and is independent af. The stability
swing leg control (Figure 6(C)). This plot is generated withs dependent on all three parameters. The graph shows that
hip width d = 0, a foot radius- = 0.5, and an ankle joint 3 more vertical ankle axis (smallei) provides stability for
orientatione = 0.55 rad. Fory > 0.01, the model is stable. |ower velocities. Interestingly, the stability boundaries are
This boundary corresponds to the upper stability boundary §imost completely coincident with lines of constant velocity;
the right graph of Figure 10. the (dashed) boundary of the (light gray) stability region
for « < /8 is almost exactly equal to the line of constant
velocity for v = 0.36 (not shown). Similarly, the (dashed)
boundary of the (dark gray) stability region fer< x/4 is
almost exactly equal to = 0.72 (not shown). Therefore,
we conclude that stability can be seen as a function of
the velocity independent of the particular slope and foot
radius that cause the velocity. Note that the velocity lines
are obtained with the numerical simulation, not with the
algebraic approximation in eg. (8).

has the same feel to it as the velocity relation in skateboards
and bicycles, in which for most parameter values there exists a
critical velocity above which stable motions occur. Therefore,
it is interesting to investigate the relation between the slope
angle, the walker’s velocity, and its stability, to answer the
question: is there a direct relationship between velocity and
stability?

To answer this question, we need to brinigito the equa-
tion because the velocity is determinedybgindr for a given
Fig. 12. Sketch of the eigenvalues of the active model assgep length. For manageability of the model and calculations,
function of ankle joint orientatiom and hip widthd for a we answer this question only for the flat version of the 3D
model (Figure 6(E)) with foot radius= 0.5 and slope angle model, i.e.d = 0 (Figure 6(C)). The result is stunning; ac-
y = 0.01 rad. The left face is equal to the right graph otording to Figure 13 there is almost a one-to-one relationship
Figure 10. The asterisk indicates the parameter set of Tablepbtween the velocity and the stability, irrespective of the spe-
cific values ofr andy that cause that velocity.

The result in Figure 13 was obtained as follows. First, the
plot contains contour lines of constant velocity. The walking
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velocity is a result of the gravitational energy input and the . o r_L\ rj—\
energy loss at the heel strike impact, which are in balance
when the walker is in a limit cycle. An analysis of the energy j/ff(p \—_J LJ
balance (not shown here for brevity) leads to the following
approximate relationship l‘j
1 )/ 02 L] —
VA \/j 8
aA-rnVve 0.4
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
where v is the walking velocity anflis the stance leg angle X

at the start of the step (equal to half of the preset inter-leg
angle). This approximation ignores the velocity decrease Big. 14. Projection of the center of mass on the floor together
mid-stance and therefore slightly overestimates the walkingith footprints for the full model (Figure 6(E)). The grid
velocity. Equation (8) clearly shows thatsifequals the leg on the floor is in units of leg length. The model walks from
length 1, then the walker could have any velocity at a slope ofiéft to right in a steady motion. The footprint directignis
while no equilibrium exists for any other slope angle, becausxaggerated; the true valge= 0.00155 (see Table 2) would
no energy is lost during heel strike. In Figure 13 we used tHee invisible in the figure.
exact velocities (from the non-linear simulations) rather than
the approximation in eq. 8.

The second ingredient of Figure 13 is the shape of the
region of stability. The figure shows for two different values o
the ankle joint orientationr what combinations of values for
the slope angle and the foot radius lead to stable walking.
The figure shows what was already known from Figure 1
a steeper slope (larger allows for a more horizontal ankle
joint (larger«). The additional information in Figure 13 is
how the stability boundary depends on bettandr, which
apparently coincides with contour lines of constant velocit
An heuristic formula for the boundary value®@fs a function

Eeading direction of 0.64 rad with respect to the direction of

steepest descent. With its new heading, the model has found
)alance between the mass offset to the right and the offset
ffect of the slope to the left.

The model is robust enough to handle a much larger mass
offset. Even if the center of mass is sideways displaced with
0.05 times the leg length, a steady (although somewhat limp-
¥hg) walking motion exists. With this offset, the model will
of the velocityv can easily be extracted from the data scatten%airt?1 vtvr:teh : gzg;uds |? r:: ?r? u;izll?:: t1|r;eli tsrl(e);)esg;ﬁr;g;;,lsa lsw(s)'? E\;\/_n
in this paper. From Figures 10 and 13 we can ex”?‘“ fOl&%\use of the direct effect of the mass offset, but because it has
data points that show an almost one-to-one linear reIannshlBrned more than 9@&nd thus receives no energy input. If the
Unin 2 & slope would turn with the walker, it would walk indefinitely

in circles.
4.4. Walking and Steering As a final stability test we investigated the disturbance re-

The previous subsections have shown that it is easy to fifgftion of the model. The model was started with the initial

stable parameter combinations for the active model. In thf@nditions for the steady walking motion plus an error on

subsection we investigate the resultant walking motion fét"€ Of them. The model is able to recover from an increase

one characteristic set of parameter values (Table 1). of at least 200% or a decrease of 100% on any of the initial

For a steady walk, the projection of the center of madsonditions, except for the velocity of the stance leg angle.

and the footprints are shown in Figure 14. The step lengti!€ stance leg's angular velocity can only be decreased with
of 0.3 times the leg length is a direct result of the swing IeaO%' otherwise the model falls backward. All in all, the model

controller. The center of mass makes sideways excursionsR5fdicts great potential for practically applicable prototypes.

+0.008 times the leg length.

The model's inherent stability means that it will reactto ang. Discussion
(not too large) disturbance by asymptotically moving back to
its steady limit cycle. This fact can be used for intentionalhe simulations predict successful walking for prototypes
steering; if the model were placed on the slope in a directiomith the special ankle joint that couples falling sideways (lean)
other than steepest descent, it will automatically steer towatal turning in that direction (yaw). The solution to any insta-
that direction. Or, even more useful, a sideways mass offdatity is to increase the walking velocity. There is however
will also induce steering in that direction. In Figure 15, whicka practical limit to the walking velocity. The simulation as-
contains a sequence of 500 walking steps, the center of massnes that the (almost massless) swing leg is always in time
was displaced slightly (0.006 times the leg length) to the righto catch the walker for its next step, but a physical swing
The result is that the model asymptotically moves toward lag with substantial mass cannot move instantaneously. Its
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found that lateral stability can be obtained through fore—aft
leg motions, which should also be considered as a dynamic
lean-to-yaw coupling.

20 6. Conclusion

This paper shows that a special ankle joint that couples falling
sideways (lean) to turning in that direction (yaw) can lead to
stable 3D walking models. A practical robustness against dis-
turbances requires a basic form of swing leg control, which
moves the swing leg quickly to a forward position. With this

40

60

D”e‘C“O” of St‘eePE‘St decent control rule in place, the model shows behavior that corre-

80 i : i i

5 % m < m 150 50 spondsf to b'lgycles and skatebgards, stablle motions §X|st above
X a certain critical forward velocity, depending on the tilt angle

« of the ankle axis. The more vertical the axis (smadlgr

Fig. 15. Projection of the center of mass on the floor togeth#&te lower the critical velocity. There is a minimum, however;
with footprints for 500 steps. The model has a mass offséie tilt anglea must always remain larger than the maximal
to the right and thus steers asymptotically toward a directigiiance leg angle, otherwise it would have a completely ver-
in which the sideways slope effect is in balance with th#cal orientation at the end of a step. This not only leads to
effect of the mass offset. A much larger mass offset resuli@stabilities but also requires impractical wide feet to prevent
in a tighter turn as shown with the dashed line. After a turfipping over on the inside of the foot.

of more than 99 the walker receives no energy input and The ankle joint provides an effective means for direction
eventually stops and falls. control; a slight asymmetry in any of the parameters (such as

a sideways mass offset) results in a walk on a curved path.

The simulations with the elementary model presented in this

paper predict a sufficient robustness against disturbances to
warrant the construction of a physical 3D prototype.

velocity is not only limited by practical considerations (actu-
ator capacity), but also by the fact thatits reaction torque mighck nowledgment
exceed the friction torques that the stance foot can supply.
Our model is not equipped with springs in the ankle jointshis research is partially funded by the Dutch National Tech-
for the sake of simplicity. The skateboard analysis, howeveiology Foundation (STW).
predicts a beneficial influence of such springs. It is recom-
mended for future research to investigate the possible stabilit
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