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Abstract

One of the great challenges in the development of passive dynamic
walking robots (useful for an understanding of human gait and for
future applications in entertainment and the like) is the stabiliza-
tion of three-dimensional motions. This is a difficult problem due
to the inherent interaction between fore–aft motions and sideways
motions. In this paper we propose a simple solution. Conceptually,
one can avert a sideways fall by steering in that direction, similar to
skateboards and bicycles. We propose to implement this concept for
walking robots by the introduction of an ankle joint that kinemati-
cally couples lean to yaw. The ankle joint has an unusual orienta-
tion; its axis points forward and downward, without any left–right
component. The effect of the ankle joint is investigated in a simple
three-dimensional model with three internal degrees of freedom: one
at the hip and two at the ankles. It has cylindric feet and an actuator
at the hip joint, which quickly moves the swing leg to a preset for-
ward position. The simulations show that it is easy to find a stable
configuration, and that the resultant walking motion is highly robust
to disturbances. Similar to skateboards and bicycles, there exists a
critical velocity (as a function of the parameters) above which sta-
ble walking motions occur. The critical velocity can be lower for a
more vertical ankle axis orientation. As an additional benefit, the
ankle joint allows a straightforward implementation for steering; a
simple sideways offset of the mass distribution will cause the model
to gently steer in that direction. The results show great potential for
the construction of a real-world prototype with the proposed ankle
joint.
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1. Introduction

Passive dynamic walking (McGeer 1990) is a well-known
concept for the design of energy efficient bipedal (two-legged)
robots with a natural-looking gait. In their purest form, such
walkers are fully unactuated (and thus uncontrolled), while
walking stably down a shallow slope. The swing leg moves
forward at its natural frequency as a passive pendulum while
the stance leg rotates forward as an inverted pendulum, usu-
ally rolling on an arc-shaped foot. For passive walkers with
lateral constraints (i.e., only possessing two-dimensional (2D)
dynamics) it has been shown that stable walking motions ex-
ist for a wide range of parameter values for prototypes both
with and without knees. Moreover, it is straightforward to add
elementary hip actuation for level-floor walking with a con-
siderable robustness (Wisse et al. 2005) and to add an upper
body through the use of a bisecting hip mechanism (Wisse,
Schwab, and van der Helm 2004).

One of the great challenges is to find the key to stability in
three dimensions. In addition to the fore–aft motions (pitch),
in three dimensions also sideways motions (lean) and rotations
around the vertical axis (yaw) are possible. It is the interaction
between all three of these that renders the problem of three-
dimensional (3D) stability so difficult. Consequently, most of
the known solutions to this problem are successful because
they reduce the interaction in one way or another, as follows:

• ignore yaw by assuming sufficient yaw resistance in the
foot contact (Kuo 1999; Piiroinen 2002);
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• apply large moments of inertia against yaw (Coleman
and Ruina 1998; Coleman et al. 2001);

• walk with short steps (Coleman and Ruina 1998; van
der Linde 2001; Tedrake et al. 2004);

• counteract yaw with a counter-rotating body (Wisse and
Schwab 2001) or with counter-swinging arms (Collins,
Wisse, and Ruina 2001).

In this paper, however, we aim not at a reduced interaction
between the degrees of freedom, but conversely we show how
a purposefully induced interaction between lean and yaw can
actually benefit the stability of the walking motion.

First, in Section 2 we introduce the main idea through the
related problems of skateboard and bike stability. Then, in
Section 3 an elementary walking model is introduced, fol-
lowed by the simulation results in Section 4 and the discussion
and conclusion in Sections 5 and 6.

2. Advantageous Lean-to-yaw Coupling

In 3D walking, side-to-side tipping (i.e., excessive leaning)
is a major stability hazard. One of the most effective con-
trol opportunities is lateral foot placement—placing the next
swing leg sideways to avert a fall in that direction (Kuo 1999;
Donelan et al. 2004). The key insight in this paper is that such
lateral foot placement can be obtained by steering, i.e., yaw.
Rotation around the vertical axis by itself has no effect, but
in combination with forward progression, it suddenly affects
the lateral foot placement. In other words, if during a forward
walking motion one steers to the left, then automatically the
next footfall will be placed more to the left side. Thus, yaw
can be used for side-to-side stability, as long as there is a
forward progression. Stability can be obtained if the unstable
lean is either kinematically or dynamically coupled to the yaw
motion.

In this section, we investigate two known examples of such
advantageous lean-to-yaw coupling: a skateboard and a bicy-
cle. These examples represent two different forms of lean-to-
yaw coupling. The skateboard has a kinematic coupling; yaw
and lean are combined in a single degree of freedom, as ex-
plained in Section 2.2. The bicycle has a dynamic coupling;
besides the sideways lean degree of freedom of the bicycle,
there is a separate degree of freedom for the steering front
fork. The bicycle study is presented in Section 2.3. Note that
the remainder of the paper addresses a kinematic lean-to-yaw
coupling for walking machines, for which the skateboard is
the most relevant analogy.

2.1. Skateboard

In the skateboard, the two sets of wheels are attached to the
board via tilted steering axes (Figure 1). Although the main
purpose of this construction is to give the rider the ability
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Fig. 1. Parameters of the skateboard model.

to steer, here we show how this also provides stability. The
following analysis is a simplified version of the skateboard
stability analysis by Hubbard (1979).

The board and wheels are assumed to be massless and the
height between the board and the floor is neglected. Also, we
assume that there is always contact between all four wheels
and the floor; the model cannot tip over. The rider is modeled
as a single point mass at heighth above the floor, rigidly
attached to the skateboard. The distance between the front
and rear wheels isw. The steering axes are mounted at an
angleα with respect to vertical such that sideways leaning
of the rider results in steering in that direction. The steering
axes are equipped with rotational springs with stiffnessk. The
model has fore–aft and sideways symmetry.

The skateboard is a non-holonomic system, i.e., it cannot
slip sideways but it can move to a sideways position by a
sequence of steering actions. Therefore, it has a smaller ve-
locity space (lean and ride) than coordinate space (lean,x- and
y-position and orientation in plane). Here we consider the lin-
earized equations of motion in which the forward velocity can
be considered as a parameter. The linearized model only has
one degree of freedom, i.e., the sideways lean angle of the
rider θ (Figure 2). With zero forward velocity, the behavior
equals that of an inverted pendulum with a destabilizing grav-
ity torque and a stabilizing spring torque. Although the two
springs act on the tilted joints, in their projected torques the
tilt angleα cancels out.

When riding with a velocityv, the skateboard makes a
turn if there is a non-zero leanθ . The velocity together with
the radius of curvaturerc (Figure 2) determine the sideways
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Fig. 2. Variables for the linearized skateboard model: left, a
rear view; right, a top view.

acceleration of the board according to

a = v2

rc
= 2v2

w tanα
θ. (1)

Therefore, the total system equation describing the linearized
model becomes

mh2θ̈ +
(

2k −mgh+ 2mh

w tanα
v2

)
θ = 0. (2)

This result can be interpreted as follows. If the spring stiffness
k is high enough to counteract the inverted pendulum insta-
bility, then the system is never unstable. If not, then it can
always be made stable by its velocity. The larger the angleα

is, the higher the required velocity. The critical velocity is

vmin =
√
(mgh− 2k)w tanα

2mh
. (3)

Note that the system can at best only be marginally stable.
The introduction of damping in the steering axis could make
it asymptotically stable. Also note that eq. (3) suggests that
it is best to make angleα equal to zero. In real life there is
a lower limit toα dependent on the width of the skateboard
because of the unilateral contact between the wheels and the
floor.

2.2. Bicycle

Everybody knows that a bicycle is highly unstable at rest but
can easily be stabilized at a moderate speed. Moreover, some
uncontrolled bicycles can be asymptotically stable in a certain
speed range. To demonstrate this phenomenon, we consider
one of the simplest bicycle models: an uncontrolled bicycle
with a rigid rider attached. This is an example of a dynami-
cally coupled lean-to-yaw motion due to the hands-free op-
eration of the bicycle. The following analysis is based on a
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Fig. 3. Bicycle model together with the coordinate system,
the degrees of freedom, and the parameters, from Schwab,
Meijaard, and Papadopoulos (2005).

recent bicycle benchmark publication by Schwab, Meijaard,
and Papadopoulos (2005).

The mechanical model of the bicycle consists of four rigid
bodies: the rear frame with the rider rigidly attached to it,
the front frame consisting of the front fork and handle bar
assembly, and the two knife-edge wheels. These bodies are
interconnected by revolute hinges at the steering head be-
tween the rear frame and the front frame and at the two wheel
hubs. The contact between the stiff non-slipping wheels and
the flat level surface is modeled by holonomic constraints in
the normal direction and by non-holonomic constraints in the
longitudinal and lateral directions. There is no friction, apart
from the idealized friction between the non-slipping wheels
and the surface, no propulsion and no rider control, the so-
called hands free coasting operation.

The mechanical model of the bicycle has three degrees of
freedom: the lean angleφ of the rear frame, the steering angle
δ, and the rotationθr of the rear wheel with respect to the rear
frame. The forward speed isv = −θ̇rRrw, whereRrw is the ra-
dius of the rear wheel. Due to the non-holonomic constraints,
there are four extra kinematic coordinates which describe, to-
gether with the degrees of freedom, the configuration of the
system (Schwab and Meijaard 2003). The four kinematic co-
ordinates are taken here as the Cartesian coordinatesx andy
of the rear-wheel contact point, the yaw angleψ of the rear
frame, and the rotationθf of the front wheel with respect to
the front frame. The dimensions and mechanical properties of
the benchmark model are those of a regular 18 kg bicycle with
an average 76 kg rider. For the complete set of parameters,
we refer to Schwab, Meijaard, and Papadopoulos (2005).

In this study, we consider the linearized model of the bi-
cycle at constant forward speed. In the linearized model only
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two degrees of freedom remain,q = (φ, δ)T. The equations
of motion are

Mq̈ + [C1 · v]q̇ + [K0 + K2 · v 2]q = f , (4)

with a constant mass matrix,M, a “damping” matrix,C1,
which is proportional to the forward speedv, and a stiffness
matrix, which has a constant part,K0, and a part,K2, which
is proportional to the square of the forward speed. Unfortu-
nately the entries in the matrices are too complex and lengthy
to express in a concise symbolic form. The benchmark pa-
per (Schwab, Meijaard, and Papadopoulos 2005) does present
these entries in an algorithmic manner. Simplification of these
expressions by neglecting so-called minor terms, as has been
done by others in the past, would lead to incorrect results.
Therefore, we choose here to present typical values for the
entries in the matrices, i.e.,

M =
[

80.812 2.3234
2.3234 0.30127

]
,

C1 =
[

0 33.774
−0.84823 1.7070

]
,

K0 =
[ −794.12, −25.739

−25.739 −8.1394

]
,

K2 =
[

0 76.406
0 2.6756

]
,

(5)

where we use the standard units kg, m, and s. The forcesf
on the right-hand side are the action–reaction lean moment
between the fixed space and the rear frame, and the action–
reaction steering moment between the rear frame and the front
frame. The latter is the torque that would be applied by a
rider’s hands or a controller. In the present study of an ordinary
uncontrolled bicycle, both of these moments are taken to be
zero.

To investigate the stability of the upright steady motion,
we start from the homogeneous linearized equations of mo-
tion (4). Next we assume for the small variations in the de-
grees of freedom an exponential motion with respect to time,
which then takes the formq = q0 exp(λt). This leads to an
eigenvalue problem for which in this case the characteristic
equation is a polynomial in the eigenvaluesλ of order four.
The coefficients in this polynomial are themselves polyno-
mials in the forward speedv, since some coefficients of the
linearized equations of motion have a linear or quadratic de-
pendency onv. The solutions of the characteristic polynomial
for a range of forward speeds are the root loci of the eigen-
valuesλ, which are shown in Figure 4. Eigenvalues with a
positive real part correspond to unstable motions, whereas
eigenvalues with a negative real part result in asymptotically
stable motions. Complex conjugated eigenvalues give rise to
oscillatory motions.

For the bicycle model there are two significant eigenmodes,
called capsize mode and weave mode. The capsize motion is
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Fig. 4. Eigenvaluesλ from the linearized stability analysis
for the benchmark bicycle from Figure 3 and Schwab,
Meijaard, and Papadopoulos (2005) where the solid lines
correspond to the real part of the eigenvalues and the dashed
line corresponds to the imaginary part of the eigenvalues,
in the forward speed range of 0≤ v ≤ 10 m s−1. The zero
crossings of the real part of the eigenvalues are for the weave
motion atvw = 4.3 m s−1 and for the capsize motion at
vc = 6.1 m s−1, giving the bicycle an asymptotically stable
speed range ofvw < v < vc.

a non-oscillatory motion in which, when unstable, the bicycle
just falls over like a capsizing ship. The weave motion is an os-
cillatory motion in which the bicycle sways about the headed
direction. Both eigenmodes show the dynamically coupled
lean-to-yaw motion. At very low speed, 0< v < 0.7 m s−1,
there are two positive and two negative eigenvalues which
correspond to an inverted pendulum-like motion of the bicy-
cle. At v = 0.7 m s−1 two real eigenvalues become identical
and start forming a conjugated pair; this is where the oscilla-
tory weave motion emerges. At first, this motion is unstable
but abovevw = 4.3 m s−1 the weave motion becomes stable.
After this bifurcation, the frequency of the weave motion is
almost proportional to the forward speed. Meanwhile the cap-
size motion, which was stable for low speed, becomes mildly
unstable atvc = 6.1 m s−1. With further increase in speed, the
capsize eigenvalue approaches zero.

We conclude that the bicycle model shows a dynamic lean-
to-yaw coupling resulting in an asymptotically stable motion.
Similar to the skateboard, with its kinematic coupling, a min-
imal forward velocity is required for this stabilizing effect.
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Fig. 5. Degrees of freedom (left) and parameters (right) of
our simple walking model with ankle joints that couple lean
to yaw.

3. Simplest Passive Walking Model with
Lean-to-yaw Coupling

The purpose of the simulation model is to show the essential
dynamic effects of kinematic lean-to-yaw coupling in walking
systems. The simplest model for this purpose is a 3D cousin
of Garcia’s 2D ‘simplest walking model’ (Garcia et al. 1998),
which consisted of one finite point mass at the hip joint, two
infinitesimally small point masses at the feet, and massless
rigid links in between, interconnected with a frictionless hinge
at the hip. Our model (Figure 5) is a 3D extension of this; the
hip has gained a finite width and the hip mass is divided into
two point masses at the extremes of the massless hip axle. For
numerical reasons, the point masses at the feet of our model
are not infinitesimally small but just very small. The degrees
of freedom are the coordinates and the yaw and lean angles of
the center of the hip axle{xh, yh, zh, u1, u2}, the two leg pitch
angles{u3, u4}, and the two ankle angles{u5, u6}. The ankle
axes are mounted in thex–y-plane at an angleαwith respect to
the vertical. Note that the ankle axes have no component in the
z-direction, unlike conventional robot designs or the human
ankle. The “normal” ankle functionality, rotation around the
z-axis, is realized by means of the roll-off motion of the feet.

The feet are (partial) cylinder shells with the cylinder axis
perpendicular to the ankle axis. They are mounted such that
the cylinder axis is in the leg (not displaced forward or back-
ward) and that the total leg length (when standing upright) is
independent of the cylinder radius. The foot contact is mod-
eled as a perfectly rigid cylinder–plane contact with only one
degree of freedom: pitch in a direction perpendicular to the
cylinder axis. The width of the feet is not specified and is as-

sumed to be sufficient to prevent sideways tipping over the
edge. The feet in the model have a finite size but no inertia, so
the foot of the swing leg contributes to the system dynamics
only as a point mass. For the detection of heel contact, the
swing foot is assumed to preserve its parallel orientation with
respect to the floor surface. Heel contact itself is modeled as
a rigid plastic impact with immediate and full contact to the
floor, while at the same instant the previous stance foot loses
contact.

The model walks down a shallow slopeγ . All parame-
ters are scaled so that gravityg, the leg lengthl and the total
robot mass (2mhip) are all equal to one.1 The simulation re-
sults can be scaled back to obtain results, for example, for
an earthly gravity regime. This scaling exposes the minimal
set of adjustable parameters: hip widthd, foot radiusr, ankle
mounting angleα, and slope angleγ as listed in Table 1. Ad-
ditionally, a (small) torque can be exerted at the hip joint to
move the swing leg quickly to a forward position, a feature
that will prove necessary for stable walking (Section 4).

3.1. Equations of Motion

The equations of motion for the system without foot contact
constraints were generated with the method of virtual power
as described in Schwab and Wisse (2001), where the 12 de-
pendent degrees of freedom ({x, y, z} for each point mass)
were expressed in terms of the nine generalized coordinates
{xh, yh, zh, u1...u6}. In addition, there are three coordinates
that change value only once per step: the foot roll-off direc-
tion φ and the foot contact location{xc, zc}. The five foot
contact constraints are expressed as follows.

1. No yaw: the foot cylinder axis must remain perpendic-
ular to its initial heading.

2. No lean: the foot cylinder axis must remain perpendic-
ular to the normal of the floor.

3. Contact with plane: the center of the foot cylinder axis
must remain a distancer (foot radius) above the floor.

4. No lateral slip.

5. No forward slip: the forward disposition should match
with the pitch angle.

1. Due to the applied scaling, most quantities in this text are dimensionless,
which explains the frequent use of seemingly incomplete statements such as
‘a velocity of 0.36’.

Table 1. Parameters and Their Default Values
Hip width d 0.3
Foot radius r 0.5
Ankle mounting angle α 0.55
Slope angle γ 0.01
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These constraint conditions (either for the right foot or for
the left foot, depending on which is in stance phase) were
added to the equations of motion to obtain a system of differ-
ential algebraic equations, which solves for the nine general-
ized coordinates and five Lagrange multipliers (one unknown
contact force or torque per constraint condition). The impact
equations for the heel strike event are derived in the same sys-
tematic manner (Schwab and Wisse 2001), in which the five
foot contact constraints serve as contact conditions where im-
pulsive forces can occur.

3.2. Simulation Procedure

The simulation procedure is a succession of simulations of
walking steps which begin and end at the instant immediately
after heel strike. Within one step, the system of differential
algebraic equations is numerically integrated until heel strike
is detected, followed by an impact calculation. The end state
of the walker is then used as the starting state for a second
step. After the second heel strike, the end state ({q, q̇}n+1) is
compared to the initial state of the walker ({q, q̇}n) and the
entire two steps can be summarized as the non-linear stride
functionS which maps the end states on the initial states:

[
qn+1

q̇n+1

]
= S

([
qn
q̇n

])
. (6)

Note that we do not apply the common procedure of state-
mirroring at the end of the step, which is used in most 2D
analyses to confine the simulation to only one walking step
instead of two consecutive steps.

According to the Poincaré mapping method, if the end state
equals the initial state, we have found a fixed point represent-
ing a cyclic walking motion. The stability is determined by the
effect of deviationsεεεn in the initial state on deviationsεεεn+1

in the end state. For small deviations, we assume linearity
around the fixed point, such that

εεεn+1 = Jεεεn with J = ∂S
∂(qn, q̇n)

. (7)

J is the Jacobian of the stride functionS and is determined by
performing the simulation procedure once for all deviations
εεεn, one for each independent initial condition. The stability
characteristics are described by the eigenvaluesλλλ of the Jaco-
bianJ; if all are smaller than 1 in magnitude, errors decay over
subsequent strides. The smaller the eigenvalues, the faster the
walker converges toward the fixed point. Note that the defini-
tion of eigenvalues here differs from Section 2; the analysis of
the walking model is discrete (−1< λ < 1 is stable) whereas
the skateboard and bicycle analysis is continuous (λ < 0 is
stable).

For the stability analysis, there are six relevant independent
initial conditions{q, q̇}n for the start of a stride. The nine
independent coordinates for the free model are reduced by

five foot contact constraints to four independent degrees of
freedom when one foot is in contact with the floor. The angle
of the swing foot is not connected to any inertia, so this leaves
only three independent degrees of freedom and thus six states:
{u3, u4, u6, u̇3, u̇4, u̇6} for left stance. The Poincaré section
removes one state (one of the hip angles) so that there would
be five independent initial conditions. In addition, there are
three coordinates that change only once per step:xc, zc, andφ.
The linear coordinatesxc andzc are not relevant to the walking
motion, but the foot roll-off directionφ is, so it must be added
to the set of independent initial conditions. Therefore, in total
there are six relevant independent initial conditions as listed
in Table 2.

4. Simulation Results

In this section we present the behavior and stability of five
simulation models of increasing complexity. The first model
(Figure 6(A)) is Garcia’s 2D ‘simplest walking model’(Garcia
et al. 1998). This fully passive model has straight legs with
point feet (with infinitesimally small point masses) and a large
point mass at the hip. The second model (Figure 6(B)) is
similar, except that it has arc feet instead of point feet. The
third model (Figure 6(C)) is equal to the second model except
that it is 3D. It has no hip width but it can move out-of-plane.
Also, this model is equipped with the proposed ankle joints.
The fourth model (Figure 6(D)) differs in that it has a non-zero
hip width, and the fifth model (Figure 6(E)) has an additional
actuator at the hip joint (Wisse et al. 2004).

4.1. Fully Passive Model

Garcia et al. (1998) researched the simplest walking model in
two dimensions that could still demonstrate a passive walk-
ing motion (Figure 6(A)). The model consists of three point
masses, one of mass 1 at the hip and two infinitesimally small
point masses at the feet, with rigid, massless links as legs in-
terconnected with a frictionless hinge. Therefore, it has two
degrees of freedom when in stance phase and thus 2×2−1 = 3
independent initial conditions for a step starting with the rear
leg just leaving the floor. With its point feet (no radius of cur-
vature), the simplest walking model is a special 2D case of
the model presented in this paper.

Table 2. Fixed Point Initial Conditions for Left Stance,Valid
for the Parameter Values in Table 1

Foot heading φ2 0.0016
Stance leg angle u4 0.155
Stance ankle angle u6 −0.0041
Stance leg angular velocity u̇4 −0.42
Stance ankle angular velocity u̇6 −0.070
Swing leg angular velocity u̇3 −0.42
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(A) (E)(D)(C)(B)

Fig. 6. Models with increasing complexity: (A) 2D point foot
walker (Garcia et al. 1998); (B) 2D arc foot walker; (C) flat
3D walker (passive or active); (D) passive 3D walker with
finite hip width; (E) active 3D walker.

The model shows a stable walking pattern when walking on
a shallow slope with a downward angle smaller than 0.015 rad
(Garcia et al. 1998). For example, Table 3 presents the eigen-
valuesλλλ for the cyclic motion that exists for a typical slope of
0.004 rad. It has been shown, however, that the simplest walk-
ing model is highly susceptible to disturbances (Schwab and
Wisse 2001), and that this sensitivity can be greatly reduced
by the application of arc feet with a substantial radius (Wisse
and van Frankenhuyzen 2003). Therefore, we continue this
paper with a model with arc feet with a radius of (a somewhat
arbitrarily chosen) 0.5 times the leg length. For comparison
within this paper and with previous publications (Schwab and
Wisse 2001; Wisse et al. 2004), the arc foot model is given
the same step length and approximately the same velocity as
the point foot model by adjustment of the slope angle. The
step length is determined by the initial stance leg angleθ0. On
a slope ofγ = 0.004 rad, the point foot model has a limit
cycle with θ0 = 0.15 rad. The arc foot walker only needs a
slope ofγ = 0.00058 rad for the same step length, i.e., it
is about seven times more efficient while walking at the ap-
proximate same velocity (see Figure 7). The eigenvalues have
moved closer to 1 and thus do not suggest a stability improve-
ment (Table 3). However, we performed a crude analysis of
the basin of attraction which showed that the arc foot walker
can handle deviations from the initial conditions of 8% ver-
sus 2% for the point foot walker, indicating a better practical
applicability of the model.

An interpretation of the eigenvectors corresponding to the
last set of eigenvalues in Table 3 has shown that the first three
eigenvalues are indeed only related to the fore–aft motions,
whereas the last three eigenvalues are related to 3D motions
in which both the sideways and fore–aft direction are present.
The most important conclusion to be drawn from Table 3 is
that there exists a stable 3D walking motion for our model with
no hip width and an almost upright ankle axis (α = 0.15 rad).

Further research shows that the eigenvalues are highly sen-
sitive to the orientation of the ankle axis and that only a small
region leads to stable motions (see Figure 8). The first three
eigenvalues are not a function of the ankle axis orientation
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Fig. 7. Leg angles versus time for a point foot model
(Figure 6(A)) and an arc foot model (Figure 6(B)) with a foot
radiusr = 0.5. The displayed cyclic walking motion (only
one step is shown) is valid both for 2D models and for 3D
models with zero hip width (Figure 6(C)).

as it only influences 3D motions. The small region of stable
values forα is located around the maximal stance leg angle
(0.15 rad; see Figure 7). This means that, during the walking
motion, the orientation of the ankle axis will move from 0.3
to 0 rad with respect to an absolute reference frame, i.e., it
will have a completely vertical orientation at the end of each
step. Obviously, in this orientation the ankle joint is no longer
a “lean-to-yaw” coupling, but it has become a pure yaw de-
gree of freedom. This eliminates the stabilizing effect for two
reasons. First, there is no coupling so the yaw motion is not
related to the rest of the walking motion, resulting in uncor-
related (and thus destabilizing) rotations around the vertical
axis. Secondly, more severely, the loss of the lean degree of
freedom in the ankle joint will most likely result in sideways
tipping over on the inside edge of the foot, unless very wide
feet are applied. Recall that a similar lower boundary exists
for a realistic skateboard model.

We hypothesized that a finite hip widthd > 0 might add
to stability. A graph of the eigenvalues as a function of both
the ankle orientationα and the hip widthd is sketched in
Figure 9. The sketch is based on a number of cross-sections
in the parameter space ofα andd. The stable region forα
narrows down with an increasingd up tod ≈ 0.05, beyond
which no stable solutions were found for anyα. A search
up to d = 0.2 provided ever increasing eigenvalues, so we
extrapolate the result to conclude that no stable 3D walking
motions exist for a hip width of more than 0.05 times the leg
length.

Another hypothesis was that a steeper slope might improve
the stability; on a steeper slope, the passive walker will take
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Table 3. Eigenvalues of the Cyclic Walking Motion for the Simplest Walking Model with Point Feet, a 2D Walker with
Arc Feet, and a Flat (d = 0d = 0d = 0) 3D Walker with Ankle Axes Oriented at ααα = 0.15 rad

2D Point 2D Arc 3D with
Foot Walker Foot Walker Arc Feet
(Figure 6(A)) (Figure 6(B)) (Figure 6(C))

Eigenvalue atγ = 0.004 atγ = 0.00058 atγ = 0.00058

λ1 −0.3 + 0.27i 0.69 0.69
λ2 −0.3 − 0.27i 0.12 0.12
λ3 0 0 0
λ4 – – 0.72
λ5 – – 0.51
λ6 – – 0

Note that all eigenvalues result from two successive steps, i.e., one stride.
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Fig. 8. Typical plot of the absolute values of the eigenvalues
|λ| as a function of the ankle joint orientationα for a fully
passive 3D model (Figure 6(C)). This plot is generated with
hip widthd = 0 and foot radiusr = 0.5, walking on a slope
of γ = 0.00058 rad.

larger steps and thus walk faster, and the skateboard and bike
models predict a beneficial stability effect for higher veloci-
ties. However, the simulation has shown only marginal effects.
Up to the maximal slope of 0.046 rad beyond which no sta-
ble motions exist, the 3D graph in Figure 9 remains similar
in shape. The stable region shifts to higher values ofα along
with the increase in step length. For example, a slope increase
from 0.00058 to 0.004 rad causes the initial stance leg angle
to increase from 0.15 to 0.29 rad and also shifts the stable
values forα from around 0.15 to around 0.29 rad.
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Fig. 9. A sketch of the dependency of the eigenvalues as
a function of ankle joint orientationα and hip widthd for
a model (Figure 6(D)) with foot radiusr = 0.5 and slope
angleγ = 0.00058 rad. The left face of the figure is equal to
Figure 8.

These marginal stability results, together with the required
vertical orientation of the ankle axis, indicate that the fully
passive model is not sufficiently applicable for real-world pro-
totypes, and warrant a search for a model with stable behavior
for larger values ofα andd.

4.2. Model with Hip Actuation

In this subsection we propose to improve the overall (3D)
walking behavior through the addition of a stabilizing feature
that was originally intended for 2D machines. In two dimen-
sions, the most persistent failure is a fall forward, which can
be averted by simply accelerating the swing leg to bring it
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Fig. 10. Typical plot of the absolute values of the eigenvalues|λ| as a function of the ankle joint orientationα for a 3D model
with simple swing leg control (Figure 6(C)). This plot is generated with hip widthd = 0 and foot radiusr = 0.5, walking on
a slope ofγ = 0.00058 rad (left) andγ = 0.01 rad (right). The two graphs exemplify that the upper boundary forα increases
with an increasingγ ; the steeper the slope, the larger the region of stability. Note the difference in scale of the two graphs.

quickly to a forward position and subsequently keeping it
there (Wisse et al. 2004). This simple form of swing leg con-
trol can be implemented on our 3D model without energy
implications; the swing leg is nearly massless, so any control
action can be applied (almost) without reaction torques to the
rest of the model. Therefore, the model still requires a down-
hill slope for a sustained walking motion. This also means that
the swing leg can be moved arbitrarily fast; in the remainder
of this paper, the swing leg is assumed (and simulated) always
to be in the forward position before heel strike occurs.

We can arbitrarily set the forward angle that the swing leg
is quickly moved to. Let us maintain the value of 0.15 rad as
initial stance leg angle in accordance with the passive models
described earlier. The controller therefore has to move the
swing leg quickly to an inter-leg angle of 2× 0.15 = 0.3 rad.
The immediate effect of the controller is that disturbances on
the initial swing leg velocity do not affect the end state, and
thus one of the eigenvalues of the model becomes zero.

Looking at the behavior forγ = 0.00058, there seems to
be little difference between the active model (Figure 10(A))
and the passive model (Figure 8). The reason is that the main
improvements are to be found for larger slopes. For the active
model, a change of slope does not lead to a change of step
length, while the swing leg control ensures that the model
cannot fall forward, so any arbitrarily steep slope can be used.
These two effects of the swing leg control together result in
a much more favorable behavior. In contrast to the passive
model, for the active model an increase ofγ does not lead to
a translation of the stable region forα but rather to an increase
of this region, shown in Figure 10(B).

The stable region in Figure 10(B) has two independent
boundaries. The lower boundary forα is directly related to
the step length; ifα is lower than 0.15, the ankle axis would
reach a vertical orientation at the end of the step which leads to
directional instability.With a fixed step length due to the swing
leg controller, this lower boundary forα is more or less static.
The upper boundary is directly related to the slope angle; the
steeper the slope, the higherα can be. Or, in other words, for
a given value ofα the slope angle must be above a certain
critical value for stable walking. In Figure 11 this is depicted
forα = 0.55, the upper boundary from Figure 10(B). Note the
correlation between the two graphs; the upper boundaryα =
0.55 in Figure 10(B) corresponds to the stability boundary
γ = 0.01 in Figure 11.

With respect to the passive model, the active model has a
much larger stable region; when walking on a slope ofγ =
0.01 rad, the ankle orientation angle can be anything between
0.15 < α < 0.55 rad for stable walking. This gives good
hopes for models with a finite hip width. Figure 12 presents
the eigenvalues as a function of bothα and the hip widthd,
where the left front plane equals Figure 10(B).Apparently, for
the active model an increase of the hip width is even beneficial
to the stability, in sharp contrast with the passive model.

4.3. Stability Versus Velocity

For the active model, it is easy to find a parameter combination
that results in stable walking. Figure 11 basically suggests
that for any parameter combination, one can find stability by
increasing the slope angle past a critical value. This effect
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Fig. 11. Typical plot of the absolute values of the eigenvalues
|λ| as a function of slope angleγ for a 3D model with simple
swing leg control (Figure 6(C)). This plot is generated with
hip width d = 0, a foot radiusr = 0.5, and an ankle joint
orientationα = 0.55 rad. Forγ > 0.01, the model is stable.
This boundary corresponds to the upper stability boundary in
the right graph of Figure 10.
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Fig. 12. Sketch of the eigenvalues of the active model as a
function of ankle joint orientationα and hip widthd for a
model (Figure 6(E)) with foot radiusr = 0.5 and slope angle
γ = 0.01 rad. The left face is equal to the right graph of
Figure 10. The asterisk indicates the parameter set of Table 1.
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Fig. 13. Stability regions and walking velocity as a function
of the slope angleγ and the foot radiusr for an active, flat
3D model (Figure 6(C)). The velocity is determined by the
parametersr and γ and is independent ofα. The stability
is dependent on all three parameters. The graph shows that
a more vertical ankle axis (smallerα) provides stability for
lower velocities. Interestingly, the stability boundaries are
almost completely coincident with lines of constant velocity;
the (dashed) boundary of the (light gray) stability region
for α < π/8 is almost exactly equal to the line of constant
velocity for v = 0.36 (not shown). Similarly, the (dashed)
boundary of the (dark gray) stability region forα < π/4 is
almost exactly equal tov = 0.72 (not shown). Therefore,
we conclude that stability can be seen as a function of
the velocity independent of the particular slope and foot
radius that cause the velocity. Note that the velocity lines
are obtained with the numerical simulation, not with the
algebraic approximation in eq. (8).

has the same feel to it as the velocity relation in skateboards
and bicycles, in which for most parameter values there exists a
critical velocity above which stable motions occur. Therefore,
it is interesting to investigate the relation between the slope
angle, the walker’s velocity, and its stability, to answer the
question: is there a direct relationship between velocity and
stability?

To answer this question, we need to bringr into the equa-
tion because the velocity is determined byγ andr for a given
step length. For manageability of the model and calculations,
we answer this question only for the flat version of the 3D
model, i.e.,d = 0 (Figure 6(C)). The result is stunning; ac-
cording to Figure 13 there is almost a one-to-one relationship
between the velocity and the stability, irrespective of the spe-
cific values ofr andγ that cause that velocity.

The result in Figure 13 was obtained as follows. First, the
plot contains contour lines of constant velocity. The walking
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velocity is a result of the gravitational energy input and the
energy loss at the heel strike impact, which are in balance
when the walker is in a limit cycle. An analysis of the energy
balance (not shown here for brevity) leads to the following
approximate relationship

v ≈ 1

(1 − r)

√
γ

θ
(8)

where v is the walking velocity andθ is the stance leg angle
at the start of the step (equal to half of the preset inter-leg
angle). This approximation ignores the velocity decrease at
mid-stance and therefore slightly overestimates the walking
velocity. Equation (8) clearly shows that ifr equals the leg
length 1, then the walker could have any velocity at a slope of 0
while no equilibrium exists for any other slope angle, because
no energy is lost during heel strike. In Figure 13 we used the
exact velocities (from the non-linear simulations) rather than
the approximation in eq. 8.

The second ingredient of Figure 13 is the shape of the
region of stability. The figure shows for two different values of
the ankle joint orientationα what combinations of values for
the slope angleγ and the foot radiusr lead to stable walking.
The figure shows what was already known from Figure 10;
a steeper slope (largerγ ) allows for a more horizontal ankle
joint (largerα). The additional information in Figure 13 is
how the stability boundary depends on bothγ andr, which
apparently coincides with contour lines of constant velocity.
An heuristic formula for the boundary value ofα as a function
of the velocityv can easily be extracted from the data scattered
in this paper. From Figures 10 and 13 we can extract four
data points that show an almost one-to-one linear relationship,
vmin ≈ α.

4.4. Walking and Steering

The previous subsections have shown that it is easy to find
stable parameter combinations for the active model. In this
subsection we investigate the resultant walking motion for
one characteristic set of parameter values (Table 1).

For a steady walk, the projection of the center of mass
and the footprints are shown in Figure 14. The step length
of 0.3 times the leg length is a direct result of the swing leg
controller. The center of mass makes sideways excursions of
±0.008 times the leg length.

The model’s inherent stability means that it will react to any
(not too large) disturbance by asymptotically moving back to
its steady limit cycle. This fact can be used for intentional
steering; if the model were placed on the slope in a direction
other than steepest descent, it will automatically steer toward
that direction. Or, even more useful, a sideways mass offset
will also induce steering in that direction. In Figure 15, which
contains a sequence of 500 walking steps, the center of mass
was displaced slightly (0.006 times the leg length) to the right.
The result is that the model asymptotically moves toward a
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Fig. 14. Projection of the center of mass on the floor together
with footprints for the full model (Figure 6(E)). The grid
on the floor is in units of leg length. The model walks from
left to right in a steady motion. The footprint directionφ is
exaggerated; the true valueφ = 0.00155 (see Table 2) would
be invisible in the figure.

heading direction of 0.64 rad with respect to the direction of
steepest descent. With its new heading, the model has found
balance between the mass offset to the right and the offset
effect of the slope to the left.

The model is robust enough to handle a much larger mass
offset. Even if the center of mass is sideways displaced with
0.05 times the leg length, a steady (although somewhat limp-
ing) walking motion exists. With this offset, the model will
turn with a radius of about eight times the leg length, as shown
with the dashed line in Figure 15. It stops and falls not be-
cause of the direct effect of the mass offset, but because it has
turned more than 90◦ and thus receives no energy input. If the
slope would turn with the walker, it would walk indefinitely
in circles.

As a final stability test we investigated the disturbance re-
jection of the model. The model was started with the initial
conditions for the steady walking motion plus an error on
one of them. The model is able to recover from an increase
of at least 200% or a decrease of 100% on any of the initial
conditions, except for the velocity of the stance leg angle.
The stance leg’s angular velocity can only be decreased with
50%, otherwise the model falls backward.All in all, the model
predicts great potential for practically applicable prototypes.

5. Discussion

The simulations predict successful walking for prototypes
with the special ankle joint that couples falling sideways (lean)
to turning in that direction (yaw). The solution to any insta-
bility is to increase the walking velocity. There is however
a practical limit to the walking velocity. The simulation as-
sumes that the (almost massless) swing leg is always in time
to catch the walker for its next step, but a physical swing
leg with substantial mass cannot move instantaneously. Its
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Fig. 15. Projection of the center of mass on the floor together
with footprints for 500 steps. The model has a mass offset
to the right and thus steers asymptotically toward a direction
in which the sideways slope effect is in balance with the
effect of the mass offset. A much larger mass offset results
in a tighter turn as shown with the dashed line. After a turn
of more than 90◦, the walker receives no energy input and
eventually stops and falls.

velocity is not only limited by practical considerations (actu-
ator capacity), but also by the fact that its reaction torque might
exceed the friction torques that the stance foot can supply.

Our model is not equipped with springs in the ankle joints
for the sake of simplicity. The skateboard analysis, however,
predicts a beneficial influence of such springs. It is recom-
mended for future research to investigate the possible stability
benefit that such springs can provide for walking robots.

The implication of this paper for the creation of stable pro-
totypes goes beyond the concept of the tilted ankle joint. Even
if the proposed ankle joint is not implemented in a prototype,
it is still possible to benefit from the idea behind it; any control
algorithm anywhere in the body can have similar beneficial
stability effects, as long as its effect is a lean-to-yaw coupling.
We expect that such an effect is also present in the human body,
albeit well masked by the simultaneous presence of two other
control strategies for sideways stability: sideways foot place-
ment (Bauby and Kuo 2000; Donelan, Kram, and Kuo 2001;
Donelan et al. 2004) and inertial reaction torques from the
upper body.

In the future, we hope to gain more insight into the simi-
larity between a kinematic lean-to-yaw coupling as studied in
this paper, and a dynamic coupling as presented in the bicycle
example. A promising lead is the stable walking behavior that
was found in a 3D rimless wheel (Coleman, Chatterjee, and
Ruina 1997). Another lead is provided by Kuo (1999) who

found that lateral stability can be obtained through fore–aft
leg motions, which should also be considered as a dynamic
lean-to-yaw coupling.

6. Conclusion

This paper shows that a special ankle joint that couples falling
sideways (lean) to turning in that direction (yaw) can lead to
stable 3D walking models. A practical robustness against dis-
turbances requires a basic form of swing leg control, which
moves the swing leg quickly to a forward position. With this
control rule in place, the model shows behavior that corre-
sponds to bicycles and skateboards; stable motions exist above
a certain critical forward velocity, depending on the tilt angle
α of the ankle axis. The more vertical the axis (smallerα),
the lower the critical velocity. There is a minimum, however;
the tilt angleα must always remain larger than the maximal
stance leg angle, otherwise it would have a completely ver-
tical orientation at the end of a step. This not only leads to
instabilities but also requires impractical wide feet to prevent
tipping over on the inside of the foot.

The ankle joint provides an effective means for direction
control; a slight asymmetry in any of the parameters (such as
a sideways mass offset) results in a walk on a curved path.
The simulations with the elementary model presented in this
paper predict a sufficient robustness against disturbances to
warrant the construction of a physical 3D prototype.
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