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How to Keep From Falling Forward: Elementary
Swing Leg Action for Passive Dynamic Walkers
Martijn Wisse, Member, IEEE, Arend L. Schwab, Richard Q. van der Linde, and Frans C. T. van der Helm

Abstract—Stability control for walking bipeds has been consid-
ered a complex task. Even two-dimensional fore-aft stability in dy-
namic walking appears to be difficult to achieve. In this paper we
prove the contrary, starting from the basic belief that in nature sta-
bility control must be the sum of a number of very simple rules. We
study the global stability of the simplest walking model by deter-
mining the basin of attraction of the Poincaré map of this model.
This shows that the walker, although stable, can only handle very
small disturbances. It mostly falls, either forward or backward.
We show that it is impossible for any form of swing leg control to
solve backward falling. For the problem of forward falling, we de-
vise a simple but very effective rule for swing leg action: “You will
never fall forward if you put your swing leg fast enough in front of
your stance leg. In order to prevent falling backward the next step,
the swing leg shouldn’t be too far in front.” The effectiveness of this
rule is demonstrated with our prototype “Mike.”

Index Terms—Legged locomotion, passive dynamic walking, re-
flex, swing leg control.

I. INTRODUCTION

WHEN designing a practical locomotion system, the en-
gineer usually chooses wheels or tracks. On one hand,

legged locomotion seems complicated, even more so with only
two legs, when static stability is out of the question. On the other
hand, for some reason human beings have been equipped with
two legs, and seem to have no difficulty with locomotion. More-
over, walking does not seem to require any attention, as one can
concentrate on complicated thoughts while walking. Is bipedal
walking then really as complicated as the engineer suspects?

No, it can quite simply be the natural mode of a purely me-
chanical system. Connect two rods by a hinge, and the system
can walk down a shallow slope, the legs swinging in their nat-
ural frequency. Patents over 100 years old (e.g., [8]) already use
this principle. In 1989, McGeer [17] performed rigorous numer-
ical and practical experiments, showing that passive dynamic
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Fig. 1. Prototype Mike: 2-D passive dynamic walking robot with pneumatic
McKibben muscles at the hip.

walking, as he termed it, even allows for knees. The key to pas-
sive dynamic walking is the repetitive nature of the walking mo-
tion, a limit cycle. If such a limit cycle is existent and stable,
the walking motion is successful. McGeer, Garcia [10], Van der
Linde [23], and Goswami [11] among others researched the in-
fluence of different parameters on the stability of such walking
cycles. It is now known that by applying round feet, a large hip
mass compared to the leg mass, and not too steep a slope, a pas-
sive dynamic walker can be constructed that is stable enough for
manual startup by an experienced person.

However, human beings can deal with much larger distur-
bances. On top of the passive locomotory system, humans are
actively reacting to perturbations of the walking cycle. We pre-
sume that the human control scheme is of the same elegant sim-
plicity as the passive dynamic walking motion. A basic assump-
tion in our research is that the human walking motion is stabi-
lized by a number of very simple, modular control rules. In this
paper, we focus on one of those modules; swing leg control. We
take the simplest walking model and ask the question: “can we
achieve global stability for the simplest walking model with a
simple swing leg control rule?”. The answer is then validated
with our prototype Mike, see Fig. 1.

1552-3098/$20.00 © 2005 IEEE
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Fig. 2. Typical passive walking step. The new stance leg (lighter line) has just
made contact with the ramp in the upper left picture. The swing leg (heavier line)
swings until the next heelstrike (bottom right picture). The top-center picture
gives a description of the variables and parameters that we use. � is the angle of
the stance leg with respect to the slope normal. � is the angle between the stance
leg and the swing leg. M is the hip mass, and m is the foot mass. l is the leg
length. 
 is the ramp slope, and g is the acceleration due to gravity. Reprinted
with permission from Garcia et al. [10].

II. MODELING AND ANALYSIS

A. Simplest Walking Model

This research starts with the simplest mechanical model still
possessing the ability to perform a bipedal walking motion, as
conceived by Garcia et al. [10]. The model, shown in Fig. 2,
consists of two rigid links with unit length, connected by a fric-
tionless hinge at the hip. The mass is distributed over three point
masses; one with unit mass at the hip, and two with infinitesi-
mally small mass at the feet. This unactuated two-link system
walks down a slope in a gravity force field with unit magnitude.
The scaled model of the walker now only has one free param-
eter, the slope angle .

A walking step is started with both feet on the slope. The front
foot has just made ground contact, the hind foot has a velocity
away from the floor. During a step, the stance foot is modeled
as a hinge, connected to the floor. The swing foot is moving
freely as the other end of a double pendulum. At about mid-
stance, the swing foot is briefly allowed to be below floor level
(“foot-scuffing”), which is inevitable for a walker with straight
legs. Knees ([1], [6], [18], [26]) or other leg shortening mea-
sures ([22]), as well as three-dimensional (3-D) motion ([5],
[14], [24]) would solve the problem but increase complexity of
the model. After this short through-pass, the second time that the
swing foot reaches floor level is regarded as heel-strike, the end
of the step. The swing foot makes a fully inelastic collision and
becomes the new stance leg. Instantaneously, the former stance
leg looses ground contact, and a new step begins.

B. Limit Cycle Analysis

According to common practice, the dynamic behavior of the
simplest walking model is investigated with the following com-
puter simulation procedure. The simulation of one step com-
prises a smooth leg swing motion, an abrupt collision at heel
strike, and the switching of leg function. A simple and efficient
method for deriving the necessary equations of motion is given
in [20]. Here we will only supply a brief overview of the sim-
ulation procedure for one walking step. Then, this procedure is

applied to investigate how initial conditions change from one
step to the next.

The model has two independent degrees of freedom, the ab-
solute stance leg angle , and the relative swing leg angle . The
equations of motion, as presented in [10] and [20], read

(1)

The state of the system at the start of step is
completely determined by , , and . Shortly it will be clear
that also is a dependent initial condition, leaving only two
independent initial conditions describing the start of a step. With
these initial conditions, the equations of motion are numerically
integrated until the end of step (thus the start of step ) is
detected (when again ).

At heel strike just before the start of step , the collision
of the former swing foot with the floor, simultaneous with the
loss of ground contact of the former stance leg, leads to an in-
stantaneous velocity change from the pre-collision state to
the post-collision state calculated with

(2)

From the collision equation (2), it is obvious that the initial con-
ditions of the next step are only a function of and . Therefore,
in continuous walking there are only two independent initial
conditions. This is a result of the peculiar mass distribution into
three point masses. The final part of the simulation is switching
the stance and swing leg, resulting in initial conditions for the
next step. The simulation has now completed one walking step,
and can be repeated with the new initial conditions.

The above simulation procedure is regarded as a step-to-step
function

(3)

Monitoring the state of the system only once per cycle like this
is known as Poincaré mapping, with the event of heel strike
taken as the Poincaré section. The walker is in a limit cycle
if, logically, . These initial conditions
are then a fixed point on the Poincaré map. Fixed points can be
found with a Newton–Raphson iteration procedure as described
in [10], [17], [20], or [27]. For the simplest walker, we usually
find zero or two fixed points, as elaborated in [10]. These fixed
points represent an equilibrium of the gravitational energy input
of the slope and the collisional energy loss at heel strike. The
fixed points are the basis for stability research; if away from a
fixed point, will the walker return there over a number of steps?

C. Linearized Stability, Local Stability

Suppose we know the fixed point of the simplest walking
model, and start the simulation with these initial conditions. By
definition, every subsequent step will be equal. Starting away
from the fixed point with small errors on the initial condi-
tions results in errors on the initial conditions of the next step
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Fig. 3. Stance leg angle � at fixed point versus slope angle 
 . In this paper, all
simulations are performed with a slope of 
 = 0:004 rad leading to a fixed point
with stance leg angle � = 0:15 rad. Reprinted with permission from Garcia et
al. [10].

as . For small errors, we assume linearity around the fixed
point, such that

(4)

is the Jacobian of the stride function and is approximately
determined by performing the simulation procedure once for
both errors , one for each independent initial condition. The
stability characteristics are described by the two eigenvalues
and of the Jacobian ; if both are smaller than 1 in magnitude,
errors decay over subsequent steps. The smaller the eigenvalues,
the faster the walker converges toward the fixed point.

Garcia et al. [10] performed this linearized stability analysis
on the simplest walker, showing that it has one stable fixed point
for small slopes up to rad, and none for steeper
slopes, see Fig. 3. This concludes the recapitalization of results
from literature. It is important to note that these results are only
valid for small errors, therefore only describing the local sta-
bility around the fixed point.

D. Basin of Attraction, Global Stability

For practical use, one wants to know when the walker keeps
walking, and when it falls down. Clearly, the more initial con-
ditions of result in continuous walking, the more tolerant
is the walker for incorrect launches and in-motion disturbances.
The entire collection of initial conditions leading to walking is
what is called the basin of attraction. We know that there must
be some basin of attraction when the walker is linearly stable
around the fixed point, but how large is it? Below, we will de-
scribe how to find the complete basin of attraction with the cell
mapping method [12], and apply this method to the simplest
walking model.

The region of feasible initial conditions is subdivided into a
large number ( ) of small cells. All unfeasible initial conditions
(e.g., ) are regarded as a small number ( ) of very large
cells, so called sink cells. The cells are numbered 1 to

. By application of the step-to-step function to the center

Fig. 4. Poincaré section for the simplest walker with initial stance leg
angle � and velocity _� together with failure modes; falling Forward, falling
Backward, and Running, and the basin of Attraction of the cyclic walking
motion (�; _�) = (0:1534;�0:1561) (indicated with “+”) at a slope of

 = 0:004 rad. Reprinted from [20].

of each cell, all of the cells point to initial conditions
inside one of the other cells, except the sink cells which point to
themselves by definition. Starting with cell 1, a sequence of cells
appears by following the pointers. This sequence either ends in
a sink cell or in a repetitive cycle. This cycle can consist of one
self-repeating cell (a fixed point), or a number of cells (multiple-
period walking, Garcia [9]). The fixed point is identified and all
cells in the sequence are labeled as basin of attraction of that
fixed point. Then the procedure is repeated with cell 2, then
cell 3, etc. As soon as a known cell (from a previous sequence)
is encountered, the current sequence merges with that of the
known cell. The procedure is repeated until all cells are labeled.

Application of the cell mapping method results in a list with
all attractors (fixed points) and classification of all discretization
points into this list. Not only period-one walking gaits can be
found, also period- walking gaits. Results of the cell mapping
method are as accurate as the discretization, within these toler-
ances fixed points may come and go. For example, what appears
to be a fixed cell might in fact be slowly changing initial con-
ditions (smaller changes than the discretization) of subsequent
steps.

Withthecellmappingmethod, thebasinofattractionofthesim-
plest walker is calculated in [20], see Fig. 4. Although the shape
and size of the basinofattraction slightly varies for different slope
angles, for thisarticlewehavechosen tousea representativeslope
angle of rad. In Fig. 4 the basin of attraction is repre-
sented by the very thin area A, otherwise the walker falls forward
or backward, or, if started with high speeds, the stance foot loses
compressive ground contact (running). This analysis describes
the global stability of the walker. This is the more important sta-
bility measure for the robustness of the gait [24].

Note that the calculation of the basin of attraction is a costly
business as the number of calculations increases with the power
of the number of degrees of freedom. This is one of the reasons
that we perform the simulation analysis on the simplest walking
model instead of on the more complete model of Mike.
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Fig. 5. Maximally obtainable basin of attraction (gray area, bounded by Lines
1, 2 and 3, see text) and uncontrolled basin of attraction (thin area A) of the
simplest walking model. The entire problem of falling forward can be solved
with swing leg control, while the problem of falling backward (area B) remains
existent and would need something else than swing leg control.

III. SWING LEG ACTION FOR A LARGER BASIN OF ATTRACTION

A. Largest Possible Basin of Attraction

Now that the basin of attraction of the simplest walker is
known, some questions arise. Is it a sufficiently large basin of
attraction, or is control necessary? Can control of only the swing
leg have any substantial positive effect on the basin of attraction?
Before answering these questions, we should recognize that any
conceivable hip action does not influence the current stance leg
motion whatsoever with the assumption of massless legs. The
only thing that matters is the hip angle at heel strike. In other
words, swing leg control of the simplest walker can only influ-
ence the subsequent step.

Therefore, swing leg control cannot do anything for the
walker if the current hip velocity is not enough to pass the
apex of the hip trajectory. The mathematical equivalent of this
requirement is the following energy inequality:

(5)

or, rewriting and scaling , , and to unity

(6)

This inequality is represented in Fig. 5 with Line (1). Note that
this is the familiar separatrix in the normal simple pendulum
phase portrait. Also note that Line (1) does not coincide with
the dashed boundary between area B and area F in Fig. 4. The
area between the two lines represents a set of initial conditions
that, for the fully passive walker, does not lead to immediate
falling backward, but to a short series of successful steps that
eventually leads to falling backward [20].

The second boundary to the initial conditions for making a
successful step is the requirement for compressive foot contact:
at high velocities the centrifugal effect overcomes gravity and

the stance foot would loose contact. This boundary is repre-
sented in Fig. 5 as Line (2). The scaled vertical contact force

is given in [20] as

(7)

Requiring that , we get the inequality for Line (2)

(8)

Note that the fact that Line (2) passes through
corresponds to saying that for this nondimensionalized walker
the Froude number is equal to 1 (with body speed
equal to stance leg velocity due to the unit leg length).

The third and last boundary of the maximally achievable
basin of attraction is somewhat arbitrary; we only investigate
initial conditions with a positive stance leg angle, i.e., starting
with the stance foot in front of the swing foot, resulting in Line
(3).

Lines (1), (2), and (3) are the outer boundaries for any basin
of attraction that swing leg control could possibly achieve for
the simplest walker. Therefore we choose to use the area inside
these boundaries as a reference for the size of the basin of attrac-
tion. Comparing the area of the thin region A in Fig. 4 with the
large gray area in Fig. 5, we find that without control, the basin
of attraction is only 0.3% of the maximally achievable. This re-
sult justifies the search for a controller to enlarge the basin of
attraction.

Summarized so far, we have said that the uncontrolled sim-
plest walker very rarely walks. It mostly falls, either forward or
backward. When adding swing leg control, we cannot address
the problem of falling backward whatsoever. Therefore, for the
swing leg controller we only have to consider the forward falling
problem. This makes things easy; as long as we make sure that
the swing leg swings forward fast enough, and then just keep
it there, the problem should be solved. There is only one extra
requirement; the swing leg should not be too far forward, other-
wise the walker will fall backward at the subsequent step.

B. Rimless Wheel

If for now we stick to the idealized situation of a massless
swing leg, we could imagine the swing leg controller putting
the swing leg at a preset, constant, forward angle immediately
after the step has started. The behavior of the walker would then
be exactly equal to the “rimless spoked wheel,” a system that
has a number of “legs” (the spokes) at equal, fixed angles apart
(see the inset in Fig. 6). This system has been studied in depth
by Coleman [4], who concluded that it would always reach a
stable cyclic walking motion, provided that the leg angle is small
enough for the floor slope angle. For the slope angle of 0.004 rad
that we use throughout this paper, the interspoke angle should
be smaller than 0.4 rad [3], otherwise it would slow down and
eventually come to a stop and fall backward. We choose a safe
value of 0.3 rad, i.e., a stance leg angle rad at the start
of a step, which corresponds to the natural gait of the simplest
walking model at this slope (see Fig. 3). Fig. 6 shows the basin
of attraction of the rimless wheel with this interspoke angle of

rad.
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Fig. 6. Basin of attraction of the rimless wheel (model: see inset) with an
interspoke angle of 0.3 rad. The initial conditions to the right of the dashed line
can only be realized by starting at the top edge of a table. The “+” indicates the
fixed point of this model at a slope of 
 = 0:004 rad.

The fixed interspoke angle makes it impossible to start the
rimless wheel with a larger initial leg angle than 0.15 rad, un-
less it were started at the top edge of a table. But even then,
it would converge to its fixed point. Other than that, the only
important gap in the basin of attraction is the small corner in
the top, bounded by a line of constant energy through the point
where Line (1) crosses rad. In that corner, the initial
energy of the rimless wheel is enough to make it through the
first step, but the fixed interspoke angle is too large to make it
through the second.

In conclusion, only considering swing leg control, the maxi-
mally obtainable basin of attraction can be achieved with a con-
troller mimicking the rimless wheel.

C. Realistic Actuation Model

The previous section indicates that the stability behavior of
the rimless wheel is very close to the maximum achievable with
swing leg control. So, now it is time to devise a simple but real-
istic form of actuation that mimics the rimless wheel behavior,
acknowledging that instantaneous leg positioning is impossible.
We propose to use a spring and a damper at the hip joint with a
variable setpoint which can provide for an extra internal torque

to the swing leg, extending the equations of motion to

(9)

with

(10)

The setpoint is set to 0.3 rad corresponding to the fixed point
of the passive walker at a slope of rad. The stiffness

is the parameter that we vary, where corresponds to
the fully passive simplest walker and corresponds to
the rimless wheel. Note that is scaled with the foot mass .
The damping factor is set as a function of to provide critical
damping

(11)

Fig. 7. Basin of attraction of the simplest walker with active hip spring. The
setpoint of the hip spring is � = 0:3 and critical damping is applied. The
higher the hip spring stiffness, the larger the basin of attraction; k = 25 leads to
area (1), k = 50 leads to area (2), and k = 100 leads to area (3). The fixed point
is for all three stiffness settings approximately the same, located at the “+.” A
disturbance from a step down in the floor would result in initial conditions away
from the fixed point in the approximate direction of the white arrow.

Note that a physical realization of this type of actuation requires
an active shift of the setpoint after each heel strike from to

or vice versa.
Fig. 7 presents the stability results for different stiffness

values. A higher stiffness results in a faster swing leg motion
and thus provides a better resistance against falling forward.
The drawback is in energy consumption, but unfortunately the
model with its massless feet is too much a simplification of
real walking machines to allow for quantitative statements on
energy expenditure. With this active hip spring stiffness we can
arbitrarily make the basin of attraction as large as necessary
up to complete coverage of the maximally obtainable area, so
the problem of falling forward can be considered to be solved.
Moreover, this is achieved without any feedback control other
than a setpoint shift at heel strike.

Remember that this is just one possible way of speeding
up the swing leg. It is not this particular implementation that
counts, but the main idea behind it that the swing leg should be
swung forward quickly, and then kept there at a not-too-large
leg angle. We should emphasize here that, although simulated
with a floor slope rad, this control rule works equally
well for any slope larger than that. For smaller slopes, the preset
leg angle should be decreased accordingly. Moreover, it appears
that the amount of success of other dynamically walking bipeds
can be attributed to how well their swing leg is brought forward,
although the control rules are usually formulated implicitly
(e.g., Westervelt et al. [25]).

IV. PROTOTYPE EXPERIMENTS

A. Mike

We applied the proposed swing leg control to our prototype
“Mike” (Fig. 1). Mike weighs 7 kg and measures

m , and it uses 0.4 g of compressed CO per second. An
elaborate description of Mike can be found in [28] while movie
clips of Mike in action are available at our web site [16]. Mike
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Fig. 8. Schematic structure and muscle attachments of Mike.

has four legs symmetrically paired, giving it approximate 2-D
behavior. It differs from the simplest walking model by having
knees, a distributed leg mass, round feet and by walking on a
level floor (no slope!), all of which we will discuss in Section V.

Mike is actuated with a total of eight McKibben muscles;
lightweight pneumatic actuators that act like springs with a
stiffness proportional to the internal pressure [2], [22]. The
McKibben muscles are arranged according to Fig. 8. The hip
joint is actuated with two muscles (A) and two muscles (B)
which are arranged as two antagonistic pairs, providing a
combined joint stiffness. The knees are actively extended with
McKibben muscles (C) and (D) which are counteracted by
weak passive springs. There is no ankle actuation; the arc feet
are rigidly attached to the shanks.

B. Actuation System

The McKibben muscles are fuelled from a 5.8-MPa CO con-
tainer via a two-stage pressure regulator and via electromagnetic
valves that are activated by switches underneath the feet. The
second-stage pressure regulator output is manually adjustable
between 0.1 and 0.6 MPa resulting in a hip joint stiffness up to
5 Nm/rad and a damping somewhat less than critical damping
(estimated by observation). It is not feasible to perform a proper
mapping between this stiffness in Mike and the scaled stiffness
in the simplest walking model due to the extensive differences
between the two, such as leg mass, foot arc radius, muscle non-
linearities and significant air flow dynamics. Therefore the com-
parison between the two will be of a qualitative nature only.

If a valve is switched “on,” the muscle is filled from the pres-
sure regulator output; if switched “off” it empties into atmos-
phere. For example, at activation of the inner leg foot switch,
the outer knee muscles (muscle C in Fig. 8) are switched “off”
to allow this knee to bend. A manually tuned 400 ms later they
are switched back “on,” ensuring a properly extended knee for
the next step.

The proposed swing leg control in (10) is implemented by
alternating the states of the antagonistic hip muscles. When the
foot switch of the inner legs is activated, muscle B in Fig. 8 is
switched “on” and muscle A is switched “off.” At the next step
this is inverted. As a result, the hip joint has a constant stiffness
but a setpoint that alternates between and . The joint
stiffness can be adjusted without altering the setpoint. We want
to emphasize that there is no feedback control other than this
once-per-step switching between preset muscle pressures. We
dub this “feet-forward control.”

Fig. 9. Typical walking result with active hip muscles (0.55 MPa) on a level
floor. The prototype completes ten steps in this trial, showing convergence
toward its fixed point after a manual launch.

Fig. 10. Experiment with Mike walking on level floor and taking a step down
as a representative disturbance.

C. Stability Results

Mike walks well. Fig. 9 shows a sample of the sustained gait
for a hip muscle pressure of 0.55 MPa, see [16] for video ev-
idence. We would have liked to create a figure of its basin of
attraction like Fig. 7. However, the combined limitations on the
number of experiments to be performed and on the physical pos-
sibilities to create controlled disturbances have led us to concen-
trate on one representative disturbance, namely a step-down. In
the experiments the prototype walks steadily and then takes a
step down of increasing height, see Fig. 10. Such a step down
results in a larger stance leg velocity at the subsequent step as
sketched with the white arrow in Fig. 7. The larger the step down
height, the larger the arrow. If a larger hip muscle stiffness in-
deed allows a bigger step down, then our swing leg control rule
is validated.

The stability results are shown in Fig. 11. A hip muscle pres-
sure lower than 0.35 MPa did not provide stable walking at
all, not even without disturbances. When the pressure was in-
creased, a larger step down could be handled. The muscles pro-
hibit pressures higher than 0.55 MPa. Fig. 11 clearly shows a
better robustness against falling forward with a higher hip pres-
sure which corresponds to a higher joint stiffness.

V. DISCUSSION

A. Level Floor

One of the differences between Mike and the simplest
walking model is that Mike’s legs are not massless. When
quickly moving the swing leg forward, it is not only rotated
but its center of mass is lifted a little bit. For walkers with
nonmassless legs, this provides a way of putting energy into the
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Fig. 11. Higher hip muscle pressure setting (corresponding to a higher hip
joint stiffness) results in a larger step-down size and thus in a better resistance
against disturbances. The arrows are depicted to indicate correspondence with
the white arrow in Fig. 7.

system. For Mike this is sufficient to replace the gravitational
energy that the simplest walking model obtained from walking
downhill. As a result, Mike can walk on level terrain.

B. Distributed Leg Mass

Another difference between Mike and the simplest walking
model is that the swing leg has a nonzero moment of inertia. For
the simplest walker, any conceivable hip actuation would not in-
fluence the stance leg motion. For Mike, it does. The actual in-
fluence depends on the exact mass distribution of the swing leg.
If its center of mass were located at the hip joint, the swing leg
acceleration would have the adverse effect of a forward stance
leg acceleration. With a center of mass more in the middle of
the leg, the swing leg acceleration induces a backward accel-
eration (i.e., a deceleration) of the stance leg, which buys the
prototype some extra time to place its swing leg. A linearized
dynamic analysis of a straight-legged mechanism at midstance
shows that such advantageous deceleration occurs if

(12)

with the leg moment of inertia , leg mass , leg length , and
the distance between the hip joint and the leg’s center of mass
. From (12) we deduce that most normal constructions

result in a slight (advantageous) deceleration of the
hip.

Even though the stance leg and hip are decelerated, the center
of mass of the entire system is accelerated forward due to the
swing leg acceleration. This provides a neat opportunity to make
the prototype start from a standstill, which was implemented
successfully in the prototype.

C. Feet

The simplest walking model has point feet, whereas Mike’s
feet have a circular shape. Such feet provide extra robustness
against the complementary problem of falling backward. As de-
picted in Figs. 4 and 5, the walker will fall backward if it has not
enough velocity to overcome the vertical position. Circular feet
smoothen the hip trajectory and thus relax the initial velocity re-
quirement. As a result, the basin of attraction is enlarged in the
upper right direction. We believe that round feet are a stability
improvement measure complementary to the swing leg control
rule proposed in this paper. However, a decisive study on the

effect of circular feet on the basin of attraction has yet to be per-
formed.

D. Knees and Muscles

Other differences between Mike and the simplest walking
model are the knees and the nonlinear muscle properties. The
knees do not essentially change the global behavior [18] as the
swing leg starts and ends fully extended. One detail is that a vi-
olent knee extension at the end of the swing phase (e.g., as an
automatic reaction to toe-stubbing) will decrease the hip angle.
As at the end of the swing phase both the knee muscle and the
corresponding hip muscle are activated, it seems advantageous
to engage a biarticular muscle at that instant.

The muscles do not behave in an exactly linear fashion. Es-
pecially the damping and friction losses are strongly dependent
on the muscle length, providing much more resistance when the
muscle is close to its maximal extension. For Mike, this behavior
is useful. The swing leg is brought forward without much resis-
tance and is then effectively slowed down by the elongating hip
muscle.

E. Human Walking

From measurements on human walking (e.g., Inman et al.
[13], Winter [26]), it has been found that there is hip muscle ac-
tivity that accelerates the swing leg at the beginning of the swing
phase and decelerates it toward the end of the swing phase.
Selles et al. [21] confirms that the human swing leg moves faster
than it would if it were purely passive. At first sight, this seems
like a waste of energy, but Kuo [15] hypothesizes that humans
might speed up their swing leg to actually improve walking en-
ergetics, as it indirectly reduces the energy loss at heel strike.
In addition to Kuo’s hypothesis, the research in this paper pro-
vides a second hypothesis to why humans might speed up their
swing leg; it increases the robustness against disturbances. It is
not relevant what the exact muscle patterns are: as long as they
result in an acceleration of the swing leg to a forward position,
the positive robustness effect is similar to that of the control al-
gorithm presented in this paper.

When comparing our proposed swing leg control rule to
human muscle activation in more detail, it should be noted
that our controller is always active, even if no disturbance is
present. A more efficient controller would monitor (or even
predict) the size of the disturbances and adjust the applied
torques correspondingly. It seems reasonable to compare this
to a walking human being who will violently throw forward his
swing leg as a reflexive reaction to tripping. We hypothesize
that this reflex is a ‘full power’ version of the stabilizing control
rule presented in this paper, while in normal walking a ‘low
power’ version is applied. This hypothesis is in line with Pratt
[19] and Forner Cordero [7] who suggest that the maximum
walking speed in humans is dictated by how fast one can swing
his or her leg.

VI. CONCLUSION

We started this research asking ourselves the question: “Can
we achieve global stability for the simplest walking model with
a simple swing leg control rule?” The answer is two-staged.
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First, we showed that swing leg control can only address the
problem of falling forward. If the simplest walker falls back-
ward, there is no way that any swing leg control can change
this; there is simply not enough energy in the system to move
past the vertical position.

Second, we showed that a simple controller can completely
solve the problem of falling forward; all it needs to do is to get
the swing leg timely in a forward position. A damped hip spring
with a forward setpoint already suffices. The specific control
and actuation details are not important as the same result can be
achieved with any configuration if it is based on the following
rule: “You will never fall forward if you put your swing leg fast
enough in front of your stance leg. In order to prevent falling
backward the next step, the swing leg shouldn’t be too far in
front.” A controller designed according to this rule is easy to
implement, because no a priori knowledge of the passive dy-
namic walking motion is needed.

We validated this rule with experiments with an autonomous,
two-dimensional (four-legged) prototype with knees. The hip
joint was actuated with McKibben muscles which provide a
joint stiffness proportional to their internal CO pressure. By
using only one muscle of a pair of antagonistic muscles, the hip
joint was given a stiffness and a forward setpoint each step. In
this manner, the swing leg was accelerated forward according
to our proposed control rule. The prototype was made to take
a step-down during a steady walk, and the maximal step-down
height was recorded as a function of the hip muscle pressure (hip
joint stiffness). It was shown that a higher pressure indeed al-
lows a higher step-down. The resultant robust gait can be viewed
at [16].
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