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Summary. Passive dynamic walking is a promising concept for the design of effi-
cient, natural two-legged walking robots. Research on this topic requires an initial
point of departure; a stability analysis can be executed only after the first successful
walking motion has been found. Experience indicates that it is difficult to find this
first successful walking motion. Therefore, this paper provides the basic tools to
simulate a simple, two-dimensional walking model, to find its natural cyclic motion,
to analyze the stability, and to investigate the effect of parameter changes on the
walking motion and the stability. Especially in conjunction with the accompanying
MATLABS files, this paper can serve as a quick and effective start with the concept
of passive dynamic walking.

1 Introduction

This text is written for prospective researchers of 'Passive Dynamic Walking’.
Passive Dynamic Walking is an approach to investigate bipedal (two-legged)
walking systems, be it humans or other bipedal animals, or bipedal walking
robots that you want to build or control. Passive Dynamic Walking is a way
to look at bipedal walking. Instead of seeing it as a continuous struggle to
keep balance, bipedal walking is much better understood when regarding it as
a continuous passive fall, only intermittently interrupted by a change of foot
contact. A steady succession of steps can then be analyzed as a cyclic motion.

The approach of Passive Dynamic Walking as originally proposed by
McGeer [4] has led to various insights regarding human walking [3], and has
produced a number of natural and efficient walking machines [1, 4, 6], see

3 For availability of the accompanying files, please try http://dbl.tudelft.nl or
contact the first author.
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Fig. 1. Prototypes of passive dynamic walking bipeds that have been developed
over the years. Left: Copy of Dynamite, McGeer [4], middle: 3D walker, Collins et
al. [1], right: Mike, Wisse and Frankenhuyzen [6].

Figure 1. It is our opinion that huge progress can be made in both fields us-
ing the approach of Passive Dynamic Walking. However, experience indicates
that it is rather difficult to get started with Passive Dynamic Walking, as one
can start analysis only after at least one successful walking motion has been
found. This text serves as a guide to that first start.

We will present the complete simulation procedure for a simple, two-
dimensional passive dynamic walker. The model is realistic enough to enable
the construction of a physical prototype with corresponding behavior. Sec-
tion II describes the required algorithms for a computer simulation that will
predict a walking motion after a proper launch of the biped. This section
includes the model description, the derivation of the equations of motion,
numerical integration, heel strike detection and the derivation of the impact
equations. Section III focuses on the analysis of the step-to-step progression of
disturbances on the walking motion, encompassing the selection of a Poincaré
section and a linearized stability analysis.

The text is accompanied by a set of MATLAB (version 5.2 or higher) files
that will provide an operational programming example for a quick start. The
following sections will guide you through the functions and background of
each of the files.

2 Forward dynamic simulation
Model

The simplest system that can perform a Passive Dynamic Walking motion
consists of two rigid legs interconnected through a passive hinge. We will study
a two-dimensional model for the sake of simplicity. A real-world prototype can
be made to behave (more-or-less) two-dimensional through the construction of
two symmetric pairs of legs, see Figure 2. The corresponding dynamic model
is shown in Figure 2.
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Fig. 2. Left: Prototype Passive Dynamic Walking robot with four legs (two-
dimensional walking behavior), walking on a checkerboard surface to prevent foot-
scuffing at mid-stance. Middle: Parameters of the simulation model. Right: four
degrees of freedom of the simulation model; the position of the hip and the absolute
leg angles.

We will make a number of assumptions to keep the simulation manageable.
First, we assume that the legs suffer no flexible deformation and that the hip
joint is free of damping or friction. Second, we idealize the contact between
the foot and the floor, assuming perfectly circular feet that do not deform or
slip, while the heel strike impact is modeled as an instantaneous, fully inelastic
impact where no slip and no bounce occurs. Finally, the floor is assumed to
be a rigid and flat slope with a small downhill angle.

There is one problem due to oversimplification of the model. Contrary to
humans who have knees, the legs of the model cannot extend or retract, which
inevitably leads to foot-scuffing at mid-stance. In a real-world prototype this
problem is solved by covering the floor with a checkerboard pattern of tiles
that provide foot clearance for the swing foot, see Figure 2. In the computer
simulation, we will simply assume that there is no interference between the
floor and the swing foot under certain conditions, as described in the section
"Heel strike detection’.

Based on these assumptions, the model is defined with 14 parameters,
which is done in the file @. The world is parameterized with gravity
g and slope angle . A leg must be parameterized as a single rigid body
with a mass m, a moment of inertia I, the coordinates for its center of mass
with respect to the hip in vertical direction ¢ and in horizontal direction w,
the leg length [ and the foot radius r. An idealized model consists of two
completely equal legs. However, we have noticed that a small difference in
parameter values between the legs can strongly influence the walking behavior,
so the model will be prepared for legs with different parameter values. All
parameters are summarized in Table 1 in which we have also provided a set
of default parameter values that should lead to a successfully walking model
or prototype.

The number of degrees of freedom of this model requires some attention;
although the two legs each have two position and one orientation coordinate in
a two-dimensional world resulting in a total of six degrees of freedom (twelve
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World
gravity g 9.81 m/s?
slope angle ¥ 0.01 rad
Leg 1 and 2

length l 0.4 m
foot radius r 0.1 m
CoM location c 0.1 m

w 0 m
mass m 1 kg
mom. of inertia 1 0.01 kgm?

Table 1. Parameters for a simple passive dynamic walking model corresponding
to Figure 2. The given default parameter values were chosen to 1) comply with a
realistic prototype, and 2) provide stable simulation results.

states when including the velocities), only three states are independent at the
start of a step. We get from twelve to three by successively considering the hip
joint constraint, the foot contact, and the Poincaré section. First, the hip joint
constrains two degrees of freedom (four states) so that the model has only four
independent generalized coordinates, xp, yn, ¢1 and ¢2, see Figure 2. Second,
the foot contact constrains two more degrees of freedom (again four states),
leaving only ¢; and ¢- as independent coordinates. The hip coordinates de-
pend alternatingly on the one or the other foot contact, which is calculated
in the file . Third, we take a Poincaré Section of the cyclic walk-
ing motion. This means that we will focus our attention on the start of each
step defined as the instant just after heel strike when both feet are in contact
with the floor, which makes one more state dependent; only one leg angle is
independent, the other is the same but opposite in sign. Together with the
two independent velocities, there are three independent initial conditions that
completely define the state at the start of a step, see Table 2. The definition of
the initial conditions takes place in the file . The values in Table 2
together with the default parameter values in Table 1 will result in a cyclic
and stable walking motion.

Next to defining initial conditions for the model coordinates, we also need
to define the foot contact coordinates. The actual foot contact point travels
forward as the model ’rolls’ forward over the sole of its circular feet. Therefore
we appoint a single, fixed location as foot contact coordinate for the entire
duration of a step. This location is defined as the actual point of contact if
the leg angle is zero. The piecewise non-holonomic nature of walking systems
requires that the foot contact coordinates are re-evaluated after each step.
The initial values for the foot contact locations are set rather arbitrarily to
zero in Table 2.
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Independent initial conditions

Stance leg (leg 1) angle ¢1 0.2015 rad
Stance leg (leg 1) angular velocity é1 -1.4052 rad/s
Swing leg (leg 2) angular velocity $2 -1.1205 rad/s
Dependent initial conditions (wse_dep.m)

Swing leg (leg 2) angle ¢2 -0.2015 rad
Hip horizontal displacement zp  0.0802 m
Hip vertical displacement yn  0.3939 m
Hip horizontal velocity Zr 0.5535 m/s
Hip vertical velocity yn  0.0844 m/s
Initial foot contact coordinates

Foothold location stance leg (leg 1) zf1 0 m
Foothold location swing leg (leg 2) x fa 0m

Table 2. Initial conditions for a simple passive dynamic walking model correspond-
ing to Figure 2. Leg 1 is chosen as the initial stance leg. The given default values
will, in combination with the default parameter values in Table 1, result in a stable
cyclic walking motion.

Derivation of equations of motion

The equations of motion are the heart of the computer simulation. For our
model we will first derive the generalized equations of motion for the two
legs plus hip joint, then derive the algebraic equations that describe the al-
ternating foot contact, and finally put these together in a system of DAE’s -
Differential Algebraic Equations. The equations in this section correspond to
the file [ wse_eom.m |.

Let’s first consider the system of legs and hip without foot contact. As
explained above, that system has four independent generalized coordinates q.
Their accelerations are calculated with the set of equations

Mg—T (1)

with the generalized mass matrix M and the generalized force vector f.
They are constructed with the principle of virtual power and d’Alembert
inertia forces (the so-called TMT-method) resulting in

M=T"MT, f=T"[f, — Mh]. (2)

In this M and f; are the terms from 'normal’ Newton-Euler equations of
motion, i.e. without hip joint constraints and thus for six coordinates. The ma-
trix T transfers the independent generalized coordinates q into the velocities
of the center of mass of the bodies X. The vector h holds the convective accel-

erations. T and h are generated by running | wse_sde.m | once, which creates
the file | wse_mat.m | containing all necessary matrices.

With equation (2) we can calculate the accelerations for the two legs while
ensuring that they remain connected at the hip. However, the system is in free
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fall like this as we have not yet incorporated the contact between the feet and
the floor. This contact is described with two equations per leg. First, the foot
should be at floor level. Since we apply circular feet, the vertical constraint
equations becomes

gy = Yn — (L= 71) * cos(¢) —r 3)

where g, must be zero to fulfill the constraint. Second, the horizontal
displacement of the foot must be related to the leg angle plus some initial
offset (z;) depending on where the foot has landed,

ge=an+({ —71)*sin(P) +r*x¢p—xy (4)

where g, must be zero to prescribe pure rolling without slip.

To construct the complete set of DAE’s we must first determine which foot
is in contact, as only one set of foot contact constraints is active at a time. We
will need the second derivative of these constraint equations (in the form of
D and D2) to allow a combination with the equations of motion in the total

system of equations
M DT il F (5)
D 0 ||F. | | D274

Solving these equations at any instant will provide the generalized accel-
erations § and the foot contact forces f. at that instant.

Numerical integration

The next step is to go from accelerations at any instant to a continuous motion.
To obtain that motion numerical integration is needed, which is done in the
file . We use the classical Runge-Kutta 4 method, which calculates
in four intermediate steps the positions and velocities at time ¢t + At.

One of the problems of numerical integration is the accumulation of nu-
merical errors. The overall error can be checked by inspection of the energy
content of the system, as the sum of kinetic and potential energy should be
constant for a passive walker. An example of such energy checks is given in
the file . Otherwise, one could check stride characteristics such as
stride time or stride length, and investigate how much these change by halving
the integration step At.

Next to the overall error, there is the problem of non-satisfied constraint
conditions. The accumulating numerical errors easily lead to a foot that sinks
into the ground or flies away. The source of this type of errors is the fact that
in equation (5) there are only second derivatives of the constraint equations,
which only impose that the acceleration of the foot is zero. A small round-off
error leads to huge position displacements after a while. Therefore, the file

frequently calls the file which recalculates the hip
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coordinates and velocities as a function of the independent leg angles and
angular velocities so that the foot constraints are met.

Heel strike detection

During normal walking some events take place every step, whereas in the case
of a fall a few other events could take place. To start with the latter, falling
forward, falling backward, and losing ground contact (too high velocity) are

three possible events. At every step, the file checks for each of

these terminal events and reacts by stopping the simulation.

During continuous locomotion, at every step a heel strike impact occurs,
followed by a change of stance foot. This event is detected by monitoring the
clearance of the swing foot (equation 3). Zero clearance means that either a
genuine heel strike has occurred or that the swing leg has briefly reached floor
level during mid-stance. To distinguish between the two, the file
contains a four-level decision tree;

IF

e the vertical distance between the swing foot and the floor has changed
sign, AND

e the stance leg has passed mid-stance (i.e. its direction of motion is away
from the vertical position), AND
the swing foot is currently below floor level, AND
the legs are not parallel but in a spread configuration

THEN there must have been a valid heel-strike somewhere between the
previous and the current integration time step.

9y {Q@Jy}n,1

| -

~
~

T ¢

t N\
heelstrike N

Y
(0,9,

Fig. 3. Interpolation with third order polynomial to find the instant of heel strike
between to integration steps. The clearance function g, is given by equation 3.

If this is detected, an interpolation is necessary to determine the exact
instant of heel contact. We approximate the motion between the timesteps
tn_1 and t,, with a third order polynomial and determine when this polynomial
passes through zero, see Figure 3. This is done in . After this
operation we know the precise instant of heel contact and the state of the
model at that instant.
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Derivation of impact equations

We assume that heel strike is a fully inelastic impact between the forward foot
and the floor. During the heel-strike impact there are very high forces for a
very short time. This process can be interpreted as an impulsive motion, an
instantaneous event in which the velocities change but not the positions of the
model elements. To calculate this we can use the same equations of motion
as eq. (b) if we apply an integration over the impact duration and take the
limit of this duration to zero. The result is a system of impact equations with
much resemblance to eq. (5):

DT [¢t] | [Mi- )

b0 )15 0

The D matrix again represents the foot constraints, and is equal to the D
used in equation 5. We must carefully decide which foot constraints are active
during heel strike and which are not. At heel strike, both feet are at floor level,
so both could possibly participate in the impact. However, the contacts are
unilateral which means that only compressive forces can occur. We should only
incorporate those constraint equations that result in a compressive impulse.
For our model during normal walking, it turns out that only the forward foot
does participate whereas the hind foot does not. Presumably the hind foot
will obtain an upward velocity as a result from the impact calculation. If it
doesn’t, the assumption was wrong and we should have incorporated both feet

in equation 6, which would have resulted in a full stop. The file

checks for this.

Walking cycle

Now we have sufficient tools and algorithms to simulate a continuous walking
motion. Let’s give the model some initial conditions and see how many steps it
will take or how it might fall. The file ties all previously mentioned
files together. Use it by first setting the appropriate parameter values and

initial conditions in and and then running [ wse_scw.m |.
The simulation results are then stored in the large matrices t_t, q-t, qd_t,
f_t, and g_t, accessible from MATLAB’s base workspace as global variables.

To visualize the results, one can use and modify which plots some
basic graphs (Figure 4), or which displays a simple animation of

the resulting motion, see Figure 5.

3 Step-to-step stability analysis
Stability

The most important characteristic of a walking machine is its stability; it
should not fall down. According to the classical interpretation, this requires
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Absolute leg angles. Foot clearance

mm

4 Figure No. 3: Animation [_[o] <]
Eile Edit Wiew [Insert Tools Window Help:

fling—=2 == . A -

Fig. 5. Animation screen produced by wse_ani.m.

postural control at every instant of the motion, aimed to keep the center of
gravity above the support polygon. We believe that this static approach (and
related approaches such as "ZMP’ control [5]) are suitable for standing but
not for walking. As said before, walking should be regarded as a continuous
passive fall with intermittent changes of foot contact. Instead of analyzing the
balance at every instant we should analyze the stability of the entire cyclic
motion in a step-to-step analysis.

A step-to-step analysis allows us to concentrate on the initial conditions
only; the rest of the step is then a predictable passive motion. We can present
the initial conditions in a phase-space graph (a plot of ¢ versus gb), where any
point in the graph represents one specific combination of values for the three
independent initial conditions. All points lead to a subsequent motion, but
only some of them are successful steps. The end of a successful step is the
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start of a new one, and so some points in the graph map to some others. This
is called "Poincaré mapping’.

With a little bit of luck (depending on the model parameter values) there
are one or two points in the graph that map onto themselves. These are called
fized points. They represent a continuous walking motion with all identical
steps, which is called a limit cycle. With some more luck, one of the fixed
points is stable; if the initial conditions are a small deviation away from the
fixed point, this deviation disappears over a number of steps until the walker
is back in its limit cycle. This stability for small errors is analyzed in the
next section. A question that remains is ’how small is small’; for what initial
conditions will we still find convergence to the limit cycle? That question is
answered with an analysis of the basin of attraction, but that is outside the
scope of this paper.

Linearized stability

We need to find a fixed point and to analyze its linear (small-error) stability.
This is easiest understood in reverse order, so for now let’s assume that we
already know a fixed point. Actually we do, see Table 2. The three independent
initial conditions are represented with v = [¢1,$1,¢2]T, whereas we’ll call
the fixed point v¢,. The Poincaré mapping is represented with the nonlinear
function S, so that

Vpt+1 = S(Vn) (7)

where S is a short notation for the complete simulation of one walking step
including the heel strike impact and a mirroring of the legs to compare v, 41
with v,. All initial conditions can be written as a sum of the fixed point plus
some deviation:

Vi =V, + Avy, (8)

Although S is highly nonlinear, for small deviations from vy, we can ap-
proximate the mapping with a linearization according to

Vip+ Avprr = S(vy, + Avy,) = S(vy,) + JAv,

with J =98 ©)

This equation simplifies to Av,y; = JAv,, . The Jacobian (matrix of
partial derivatives) J here is the key to our linearized stability analysis. Ba-
sically it multiplies the errors at step n to produce those at step n + 1. If the
multiplication factor is between -1 and 1, errors decrease step after step and
the walker is stable. The multiplication factors are found in the eigenvalues
of J that should all three have a modulus smaller than 1. In the case of the
parameter values of Table 2 the eigenvalues are 0.65, 0.22 4+ 0.30i, and 0.22 -
0.30i, so the model is linearly stable.
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Unfortunately, the Jacobian J is not readily available. It must be obtained
by numeric differentiation by means of four full-step simulations; once for the
initial conditions of the fixed point and three times to monitor the effect of
a small perturbation on each of the initial conditions. This is done in the
file . The resulting eigenvalues of J tell us whether a fixed point is
stable or not. However, more than a simple 'yes’ or 'no’ cannot be expected, as
the actual eigenvalues and eigenvectors do not provide much more insight. To
determine which model is 'more stable’, one should investigate the maximally
allowable disturbance size, which can be found by analysis of the basin of
attraction (not in this paper).

Finding a fixed point

Now we know how to analyze a fixed point, but how do we find it? The
approximation of equation (9) can also be applied to a set of initial conditions
close to the fixed point (which we need to guess). This will provide an estimate
for J. With that estimate and with the difference between the beginning (v)
and the end (S(v)) of a step, a Newton-Raphson iteration can be performed
that will quickly converge to the fixed point. The iteration procedure as used

in | wse_lca.m | is as follows:

repeat
Av =[I-J]7YS(v) —v)
v=v+Av (10)

until |Av| <e

If this procedure is started for example with {¢q, b1, (;52} ={0.15,—1, -1},
it takes 7 iteration steps (£ 20 seconds on a 2GHz PC) to arrive at the fixed
point with e < 10712 .

Note that the file always simulates only a single step. In order
to compare the end state with the begin state, the end state must be mir-
rored. This is the standard procedure used in most passive dynamic walking
researches, although it is not entirely realistic. In case the model has two legs
with different mass properties or in some other special situations [2], the limit
cycle analysis should be performed on two subsequent steps which eliminates
the necessity for mirroring. The drawback of this is that there is more chance
of a fall and thus more difficulty in finding (unstable) cycles with a bad initial
guess for the initial conditions.

4 Conclusion
This paper provides the basic tools to simulate a simple, two-dimensional

walking model, to find its natural cyclic motion, to analyze the stability, and
to investigate the effect of parameter changes on the walking motion and the
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stability. Especially in conjunction with the accompanying MATLAB files,
this paper can serve as a quick and effective start with the concept of passive
dynamic walking.
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