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SUMMARY
Autonomous walking bipedal machines, possibly useful for
rehabilitation and entertainment purposes, need a high
energy efficiency, offered by the concept of ‘Passive
Dynamic Walking’ (exploitation of the natural dynamics of
the robot). 2D passive dynamic bipeds have been shown to
be inherently stable, but in the third dimension two
problematic degrees of freedom are introduced: yaw and
roll.

We propose a design for a 3D biped with a pelvic body as
a passive dynamic compensator, which will compensate for
the undesired yaw and roll motion, and allow the rest of the
robot to move as if it were a 2D machine. To test our design,
we perform numerical simulations on a multibody model of
the robot. With limit cycle analysis we calculate the stability
of the robot when walking at its natural speed.

The simulation shows that the compensator, indeed,
effectively compensates for both the yaw and the roll
motion, and that the walker is stable.

KEYWORDS: Passive dynamic walking; Biped; Dynamic; Yaw;
Efficient

1. INTRODUCTION

1.1 Passive Dynamic Walking
In the past few decades robotics research has made huge
progress in the area of biped locomotion for various reasons,
running from prosthesis development to entertainment
industries. Several institutions have succeeded in building
successful walking bipeds. One of the under-addressed
problems is energy consumption. Most existing bipeds need
an ‘umbilical cord’ for power supply. Honda Motor Co.1

developed a completely autonomous humanoid robot, but it
has to carry 20 kilograms of batteries for a 15 minute
walk!

A solution for energy efficiency is the exploitation of the
‘natural dynamics’ of the multi-body system. In 1989
McGeer2 introduced the idea of ‘passive dynamic walking’,
inspired by the research of Mochon and McMahon.3 They
showed that in human locomotion the motion of the swing
leg is merely a result of gravity acting on an unactuated
double pendulum. McGeer extended the idea and showed
that a completely unactuated and therefore uncontrolled
robot can perform a stable walk. Garcia et al.4 have
researched several stability and efficiency issues of those
passive dynamic walkers, and showed that in the limiting

case, energy consumption can even be reduced to zero, like
an ideal rolling wheel.

The walking motion of a passive dynamic walker is
started by launching the robot with such initial values for
the leg angles and velocities, that the end of that stride (the
beginning of a new stride) is nearly identical to that in the
starting conditions. A periodic or cyclic walking motion will
then result. At each stride, when the heel strikes the floor,
the impact will result in a loss of energy. This loss can be
compensated for by having the robot walk down a shallow
slope, or by periodically supplying energy with an actuator.

A passive dynamic walker has no controls, therefore it
has to be inherently stable. Although the stance leg is an
inverted pendulum so that the walker is statically unstable
when standing, surprisingly a passive dynamic walker can
possess stability when walking. This dynamic stability of
the cyclic walking motion depends on the values of the
design parameters (such as mass distribution). Before a
prototype can be designed, the proper values for the design
parameters should be determined. Therefore, a stability
analysis of a model of the prospective prototype will be
performed with the aid of numerical simulations.

1.2 Current research status
Walking toys that are based on the ‘passive dynamic’-
principle have already existed for more than a hundred
years.5 McGeer started a more systematic research of these
walkers. His most advanced prototype6 is a 2D passive
dynamic walker with knees (see Fig. 1). It achieves a
(near-)2D-behaviour with two pairs of legs: One outer pair
and one inner pair.

Coleman7 built a 3D passive dynamic walker with straight
legs (Fig. 2). The prototype proved to be marginally stable
by virtue of a non-anthropomorphic mass distribution.

Van der Linde8 built an internally powered 3D passive
dynamic walker (Fig. 3). The energy is supplied by small
actuators periodically extending the legs.

Wisse and Ruina constructed a 3D kneed passive
dynamic walker based on 2D simulations (Fig. 4). As with
Coleman’s straight legged 3D walker, there was only
marginal stability.

1.3 Goal of research
In order to make the concept of Passive Dynamic Walking
applicable for prosthetics research or entertainment pur-
poses, we want to go towards a more anthropomorphic leg
design. We aim to combine all three anthropomorphic
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characteristics of the previously mentioned prototypes into
one new 3D robot, i.e.

• two legs
• actuation
• knees

Up till now no passive dynamic walker exists with an upper
body. Our design will involve the introduction of a ‘pelvic

body’. This is not meant as an anthropomorphic upper body,
but as a means for compensating for undesired 3D
motions.

Before we start designing and building the actual
prototype, we want to analyze the stability of the pro-
spective prototype by a simulation of the dynamic
behaviour. In contrast with the ample stability of 2D
simulations and prototypes, we know of only few other
stable 3D models.9 The problematic degrees of freedom are
yaw, rotation around a vertical axis, and roll, tipping over
sideways. We want to extend the walker with a pelvic body,
aiming to compensate for those degrees of freedom. This
will allow the legs to remain in the sagittal plane, and their
motion will resemble that of a 2D walker. This paper
describes the simulations performed on a 3D model with
knees, ankles, and a pelvic compensator body, to answer the
questions:

• Is compensation of yaw and roll possible with a passive
dynamic compensator?

• Will this design result in stable walking behaviour?

2. MODEL
In this section we will describe our computer model
necessary for stability analysis. It is a passive dynamic
walker with two legs with knees and actuated ankles, and a
pelvic compensator body (see Fig. 5). The model has 9
degrees of freedom (see Fig. 6). Some of the model
elements are already known from McGeer6 and Garcia4, like
the 2D passive dynamic walking behavior and the passive
knees. We introduce actuated ankles for walking on level
ground, a foot contact model allowing yaw, and a pelvic
body meant to compensate for the undesired out-of plane
motions (yaw and roll).

2.1 Basic passive dynamic walker
The basic passive dynamic walker is McGeer’s 2D straight
legged walker2 (see Fig. 7). This walker has two equal legs,
modeled as rigid bodies coupled with a frictionless hinge at
the hip. A stride begins when one leg leaves the floor, and

Fig. 1. Close copy of McGeer’s prototype of a kneed 2D walker,
by Garcia et al.4

Fig. 2. Coleman’s7 prototype of a straight legged 3D walker, constructed with TinkerToys™.
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ends just after ‘heel strike’, when the other leg is bound to
leave the floor. At heel strike, the impact is assumed to be
fully inelastic, and the other foot is leaving the ground at
that instant, since there is no leg compliance. Therefore, at
all times there is exactly one foot in contact with the floor.
To compensate for the energy loss at heel strike, the robot
walks down a shallow slope.

2.2 Knees and ankles
The knee is modeled as a passive hinge with a unilateral
constraint, which prevents the knee from hyper-extension.
Similar to McGeer’s kneed model and prototype, impacts
into this bump stop are assumed to be fully inelastic. After
a full knee extension has been reached the thigh and shank
are assumed to be rigidly connected throughout the rest of
the stride.

To remove the necessity for walking downhill, Van der
Linde proposed periodic actuation by extension of the
legs.10 We use the same principle of adding energy at some
instant during every stride, but take a more anthropomor-
phic approach. Our model has lightweight, flat feet mounted
on periodically actuated ankle joints. The actuator is
connected to the heel by a string (see Fig. 8). If the string is
stretched, the actuator can extend the ankle joint. Otherwise,
the ankle behaves as a free joint. This behavior is
comparable to a stretch reflex without time delay.

In our model we assume that the feet are weightless, and
that the instant of heel strike is determined by a zero vertical
distance between the floor and the swing leg ankle.

2.3 Yaw
Counterswinging legs give a variation in angular momen-
tum around the vertical axis. This can be easily

Fig. 3. Van der Linde’s8 powered straight legged 2D walker.
Fig. 4. Anthropomorphic passive dynamic walker by Wisse and
Ruina [unpublished] at Cornell University, USA, 1998.
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demonstrated with two pendulums mounted on a horizontal
axle that is suspended from the ceiling by a cord. Releasing
the pendulums in opposite directions results in a counter-
swinging motion, while the system as a whole oscillates
around the vertical axis (the cord).

From experience with other 3D prototypes7,8 we know
that contact between the stance foot and the floor is not
perfect. While friction between the foot and floor is large
enough to prevent forward or sideways slip, it is not always
capable of sufficient torsional resistance. Therefore, during
a stride the robot will rotate around a vertical axis going
through the stance foot. In a prototype, the center of rotation
will not be a fixed point; it depends on the continuously
changing pressure distribution over the contact area of the
foot. The dynamic model of the contact between stance foot
and floor is a complex contact problem. For the sake of
simplicity, we assume that the center of rotation lies in the
center of the stance foot. This leads to a foot contact model
according to Fig. 6. Dynamic friction between the rotating
foot and the floor is modeled as linear damping.

The tendency to yaw is disastrous for the stability of the
walking motion. To bring the motion of the legs back to 2D,
we introduce a ‘pelvic body’ as a dynamic compensator for
the yaw rotation. We mount the pelvic body on the hip-axle
with a degree of freedom around the vertical axis. Applying
a torsional spring between this body and the hip-axle, we
obtain an oscillating body which could counteract the
change in angular momentum from the legs (see Fig. 9). The
success of the yaw compensation depends on the parameter

Fig. 5. Rendered view of our 3D biped model.

Fig. 6. Degrees of freedom of our 3D model. The massless swing
foot doesn’t influence the overall dynamics, and is therefore not
displayed.

Fig. 7. Model of McGeer’s straight legged 2D walker, 1989.
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combination of the body and the legs together. For a good
initial guess for the parameters, we bear in mind that the
eigenfrequency of the pelvic body should be close to the
oscillation frequency of the legs. If we suppose that the
compensation is successful, the pelvic body acts as if it has
a spring mounted on a fixed base. Therefore it will be
oscillating with its eigenfrequency. Only if this equals the
stride frequency, the compensating moment matches the
required moment for the changes in angular momentum,
and the premise is true. Note that the leg motions are fairly
non-linear, so that the yaw compensation can never be exact
with this compensator.

With the pelvic body mounted on the hip-axle, it is
inevitable that it will also have a degree of freedom around
this axle. However, if we situate the center of mass of the
body slightly underneath this axle, it will stay more or less
upright, without badly influencing the dynamics of the rest
of the system.

2.4 Roll
The foot contact model as shown in Fig. 6 suggests that the
robot cannot tip over sideways (roll). This can only be true
if the center of mass is above the alternating foot contact
area, or more accurately, if the center of pressure remains
within the foot contact area. There are many solutions to
solve this problem, as presented by Kuo11, one of which
involves a pelvic body behaving as a pendulum in the
frontal plane. Since we already have a pelvic body to
compensate for the yaw motion, it is evident to use it for roll
compensation as well. The motion of the pelvic body with
a substantial mass accounts for the required path of the
center of pressure (from one foot to the other). The
eigenfrequency of the pelvic body in the frontal plane must
be matched to the stride frequency to allow for it to be a
completely passive pendulum.

Note that the foot model does not allow roll at any
instance, even at heel strike. Therefore, heel strike is a fully
inelastic impact of a single point (the ankle) with four
impact constraints (three translations and rotation around
the y-axis).

2.5 System parameters
The cyclic walking motion and its stability depend on the
design parameters. Using the numerical procedures for
finding cyclic motions, as described in the next section, we
manually tuned the parameter combination so that a neat
and stable cyclic walking motion resulted. This is not in any
sense an optimized solution, but it is good enough to
demonstrate that the concept of passive dynamic compensa-
tion works. Table I shows all the design parameters.

The center of mass of the shank and thigh are located on
the central vertical axis through the hip, knee and ankle
joint. The mass of the pelvic body is assumed to be
distributed over the main ring (Fig. 5). We assume that there
is no friction in any of the robot hinges, but there is damping
in hinge 1 (Fig. 6) representing the foot contact with the
floor.

In order to allow investigation of the 2D equivalent of our
model, we have built in the possibility to fixate the 3D-
degrees of freedom: yaw and roll. Results of the 2D and 3D
simulations will be presented in section 4.

Fig. 8. Actuation scheme of ankle. During the first part of the stance phase, the ankle acts as a free joint. When the string becomes
stretched, the actuator shortens the string, so that the walker rises on its toes. When the other foot hits the floor, the actuator releases the
string. A small torsional spring in the ankle will keep the string stretched during the swing phase.

Fig. 9. Top view of our model. An oscillating compensator body
counteracts the change in angular momentum from the swinging
legs.
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3. NUMERICAL SIMULATION
In this section we wish to describe the numerical procedures
used. The simulations were performed with MATLAB.

The simulation is started when the stride is just beginning
and both legs are momentarily on the ground. The hind leg
is about to take off. The subsequent motion of the legs can
now be found by numerically integrating the equations of
motion describing the walker. The swing leg will at some
point in time hit the ground again; the end of the stride.
Assuming that this heel strike is inelastic, the foot will stay
on the ground. The impact changes the velocities of each
leg. Now, the model is poised to begin another stride. If
speeds and angles at this instant are equal (but mirrored) to
their values at the beginning of the previous stride, then the
model has hit upon a passively re-entrant cycle and can
theoretically keep walking indefinitely. If small errors are
inserted in this cyclic motion, they could grow with each
stride if the motion is unstable or decay, and eventually
disappear over a number of strides if the motion is stable.

This section describes the numerical methods used to
calculate the motion of the multibody system, to find initial
conditions resulting in a cyclic walking motion and to
determine the stability of that walking motion.

3.1 Equations of motion
First, we need to derive the Newton-Euler equations of
motion for a multibody system, expressed in terms of
independent coordinates. For each rigid body, there are
three linear and three angular equations,

∑f e =
∑T e =

meẍe,
Jev̇e + ve

3 Jeve (1)

with the global applied force vector f e, the body mass me,
the applied torque vector Te, the inertia matrix Je, and the
angular velocity vector ve, we expressed in the body fixed
reference frame. All body contributions are added to a

global mass matrix M and force vector f. The unreduced
equations of motion

M(x)ẍ2 f(ẋ, x, t) = 0 (2)

are developed into an equation of virtual power,

dẋT (M(x)ẍ2 f(ẋ, x, t)) = 0 (3)

Here, dẋ are kinematically admissible virtual velocities,
which satisfy all instantaneous kinematic constraints. It is
assumed that the coordinates, x, depend on a number of
independent generalized coordinates, q, the kinematic
degrees of freedom, by means of a transfer function F as

x = F(q) (4)

By differentiating this transfer function we obtain the
kinematic admissible virtual velocities as

d ẋ = F,qd q̇ (5)

and the coordinate accelerations as

ẍ = F,qq̈ + F,qqq̇q̇ (6)

where we use the comma operator to denote partial
derivatives:

F,q =
­F
­q

(7)

Substituting expressions (5) and (6) in the virtual power
equation (3) yields the reduced equations

Mq̈ = f (8)

with the reduced mass matrix M and force vector f as

M =FT
, qMF, q, f = FT

, q[f2MF, qqq̇q̇]. (9)

Constructing the equations in this way provides a computa-
tionally efficient method.

3.2 Numerical integration
We now have a set of second order ordinary differential
equations in the form of

q̈ = f(q, q̇, t) (10)

For numerical integration we will use a scheme specially
suitable for second order differential equations, as proposed
by Meijaard.12 This is a single step explicit integration
scheme. For a given step size h, the integration error is in
general E = O(h), and even E = O(h2) if the system is very
weakly dependent on q̇ (moderate velocities and weak
damping). This is a very efficient integration scheme,
compared to other methods like the classical fourth order
Runge-Kutta method. The method calculates the positions
and velocities at tn+1 = tn + h by evaluating the equations of
motion only once per integration step at the estimated
midpoint t = tn + 1

2h:

kn = f(q̇n, qn + 1
2 hq̇n, tn + 1

2h)
qn+1 = qn + hq̇n + 1

2h2kn

q̇n+1 = q̇n + hkn

(11)

Table I. Design parameters values as manually tuned to stability
(See Fig. 5).

Thigh mass 0.5 [kg]
Shank mass 0.4 [kg]
Pelvic body mass 1 [kg]
Ixx Thigh 0.01 [kgm2]
Iyy Thigh 0.01 [kgm2]
Izz Thigh 0 [kgm2]
Ixx Shank 0.01 [kgm2]
Iyy Shank 0.01 [kgm2]
Izz Shank 0 [kgm2]
Thigh length 0.5 [m]
Shank length 0.5 [m]
Foot length 0.05 [m]
Hip width 0.2 [m]
hip-axle to pelvic axle 0.18 [m]
pelvic axle to pelvic c.m. 0.25 [m]
hip axle to thigh c.m. 0.1 [m]
knee axle to shank c.m. 0.1 [m]
pelvic ring radius 0.42 [m]
pelvic spring stiffness 1.2 [Nm/rad]
Foot contact yaw damping 0.1 [Nm s/rad]
Ankle actuation start angle 20.08 [rad]
Ankle actuation final angle 0.2 [rad]
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The maximum allowable step size to prevent numerical
instability is characterized by

hmax = (12b)
2

lmax

(12)

with b the relative damping, and lmax the largest undamped
eigenfrequency of the linearised multibody system at its
current state.

3.3 Rootfinding
In order to find the gait, the instant that heel strike occurs at
the end of the stride has to be determined. This is detected
by a change of sign in the swing foot clearance function
Gy(q) between the discrete moments in time tn and tn+1,

Gy(q(tn))Gy(q(tn+1)) < 0. (13)

This zero crossing of Gy(q(t)) can be found with the help of
a bisection or a Newton-Raphson procedure. In any case we
need to calculate intermediate values of q(t). A fast and
accurate approach, as proposed by Meijaard,13 is inter-
polating q between tn and tn+1 with a third-order
interpolation polynomial, since we know both q and q̇ at
these instants

q(t) =

(123j 2 + 2j 3)
(j22j 2 + j 3)h

(3j 2 22j 3)
(2j 2 + j 3)h

T
q(tn)
q̇(tn)

q(tn+1)
q̇(tn+1)

(14)

with j = (t2 tn)/h and h = tn+1 2 tn. By simple interpolation
and evaluation of the clearance function Gy(q) the moment
of heel contact can be calculated within any given error
tolerance. We thus avoid evaluating the system equations (8)
to find the zero crossing.

3.4 Impact equations
We assume that the heel strike behaves as a fully inelastic
impact (no slip, no bounce), which is in accordance with
observations on existing passive dynamic walking proto-
types. Also, double stance is assumed to occur
instantaneously. As soon as the swing foot hits the floor the
stance foot lifts up, not interacting with the ground during
impact. The resulting vertical velocity of the lifting foot
should then be pointed upwards. If this is confirmed after
the impact equations are solved, the assumption is verified.
Otherwise, the robot would come to a complete stop.

Treating heel strike as an impact, we assume that
velocities change instantaneously. These velocity jumps are
enforced by very high values of the contact forces acting
only during a small time interval of contact. In the limit case
the first go to infinity and the second goes to zero. The
integral of the force with respect to time over the duration of
the impact, the impulse, has a finite value which is the cause
of the velocity jump. while the impact takes place all
positions as well as all non-impulsive forces of the
multibody system remain constant.

The impact is usually divided into a compression and an
expansion phase. Newton’s impact law links these two

phases by stating that the relative speed after impact equals
e times the relative speed before impact but in opposite
direction. The factor e is the coefficient of restitution. A
value of e = 1 would correspond with a fully elastic impact
whereas we use the value of e = 0, representing a completely
inelastic impact and the two parts “stick” together after
impact.

For a multibody system the reduced equations of motion
(8) can be written in terms of the independent coordinates

Mq̈ = f (15)

with the reduced mass matrix M, the accelerations of the
generalized coordinates q̈ and the reduced force vector f.
Note that the “lifting stance foot”-assumption implies that
the system has more degrees of freedom during impact than
during smooth motion. When contact occurs, the former
swing foot becomes constrained and the equations of
motion become

Mq̈ + GT
,ql = f (16)

with the contact forces l dual to the relative contact
velocities Ġx, Ġy and Ġz. Integration of these equations of
motion over the time of impact and taking the limit case
yields

lim
t2↑t + E t+

t2

(Mq̈ + GT
,ql)dt = 0. (17)

The total force vector f only contains nonimpulsive forces
and therefore the right-hand side vanishes. Under the
introduction of the contact impulse,

r = lim
t2↑t + E t+

t2

ldt, (18)

and noting that the mass matrix stays constant during
impact, the momentum equations for the multibody system
become

Mq̇+ + G,qr = Mq̇2 (19)

with q̇2 the velocities before and q̇+ the velocities of the
system after impact. Together with Newton’s impact law,

Ġ+ = 2eĠ2 ⇒ G,qq̇
+ = 2eG,qq̇

2 (20)

we have a complete linear set of equations for solving the
velocities after impact, q̇+ , together with the contact
impulse r. Taking (19) and (20) together, the complete set of
impact equations reads

F M

G,q

GT
,q

0 G F q̇+

r
G = F Mq̇2

2eG,qq̇
2 G (21)

With one impact occurring at a time these equations can be
solved.

After the post-impact velocities are calculated, we mirror
the state of the walker with respect to the sagittal plane (=
symmetry plane) in order to compare this with the initial
state.
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3.5 Periodic solutions
With the above procedure (numerically integrating equa-
tions of motion, impact-detection and calculation and
left-rightly mirroring) the initial conditions v = (q̇, q) can be
mapped from one stride onto the next. McGeer14 introduced
the ‘stride function’

vn+1 = S(vn ) (22)

A walking cycle is specified by the requirement that the
vector of initial conditions vn results in identical initial
conditions for the subsequent stride:

vn+1 = vn (23)

A vector with initial conditions satisfying this requirement
is a cyclic solution vc, which maps onto itself:

S(vc) = vc (24)

A cyclic solution can be found by a linearization of the
stride function

S(v + Dv)

with J =
≈
­S
­v

S(v) + JDv
(25)

and applying a Newton-Raphson iteration procedure, start-
ing with a set of initial conditions v close to the cyclic
solution vc

repeat

until uDvu < «

Dv = [I2J]21(S(v)2v)
v = v + Dv

(26)

where I is the identity matrix. The Jacobian J is calculated
by a perturbation method, which involves simulation of a
full walking stride for every initial condition. The result of
this depends on the model parameters and the initial
estimate for the solution. If the parameters are such that no
cyclic gait exists or if the initial estimate is poor, then the
solution will diverge. If the solution converges we find one
of possibly multiple cyclic solutions. McGeer14 and Garcia15

showed that with their 2D walkers there usually exist two
cyclic solutions, one with a longer stride than the other. The
long-period solution tends to be more stable than the short-
period solution. We always found only the long-period
solution, most likely meaning that this more stable solution
is much easier obtained by the Newton-Raphson iteration
than the short-period solution.

3.6 Stability
If the walker starts a stride exactly with vc, it will walk
forever. However, if small errors en appear, the periodic
solution needs to be stable for the robot to maintain gait.
The stability is described with the Jacobian J from the
previous subsection, which is the linearised multiplication
factor for errors from one stride to the next:

vc + en+1 = S(vc + en ) = S(vc) + Jen + O(e2
n) (27)

Errors will asymptotically die out if all eigenvalues of the
stride function Jacobian J have an absolute value smaller
than 1, and in that case the periodic solution is stable.

Finding a stable solution by varying the parameter values
‘by hand’ is usually pretty easy for the 2D walkers. This
process can also be optimized with a searching algorithm,
but this tends to be problematic, both regarding the
computation time needed and slow convergention if any.

4. RESULTS
Our main question is: will a 3D passive dynamic walker
with a dynamic compensator for the yaw and roll motions
be inherently stable? We will first show the stability results
for a 2D version of our model. Then, we will show that the
3D version is not stable, unless compensated with the pelvic
body. The design parameters have not been numerically
optimized; this falls outside the scope of our research. We
manually tuned the parameters until we found a stable
configuration (see Table I).

Fig. 10. The compensator body acts as an unactuated pendulum in
the frontal plane, preventing the walker from tipping over
sideways.

Fig. 11. Stability of the 2D version of our complete model: a 2D,
kneed walker with actuated ankles.
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One of the main reasons for working with the concept of
Passive Dynamic Walking is to achieve an energy-efficient
machine. Our highly underactuated walking machine (two
partially actuated ankle joints for a system with nine degrees
of freedom) with a total mass of about 3 kg used 0.15 Joule/
kg m at a nominal speed of 0.5 m/s. This approximately
equals the energy input into the passive dynamic walkers
of McGeer and Garcia that walk down a slope of about
1 degree.

4.1 Stability of 2D version
McGeer found that both his simple straight-legged 2D
walker and his robot with knees had a fairly large range of
parameter values resulting in stability.14 These results have
been experimentally proven by several working prototypes.

We performed simulations of a 2D version of our
compensated 3D model, involving knees and ankles, but no
yaw and roll motions. Figure 11 shows the eigenvalues of
the Jacobian of the stride function J (27) represented in the
complex plane. The walker is stable when all eigenvalues
are situated within the unit circle.

The eigenvalues lie well within the unit circle. This shows
that the 2D version of our walker has an applicable level of

inherent stability, comparable to that of McGeer’s and
Garcia’s working prototypes.

4.2 3D model
The extension from 2D to 3D involves the extra abilities for
the robot to yaw and to roll. Figure 12 shows the path of the
center of the hip-axle projected on the floor, once with and
once without the presence of a pelvic compensator body.
With the pelvic compensator, the robot walks nearly in a
straight line, demonstrating successful compensation of the
yaw-motion. The non-compensated model not only walks in
a zigzag, but is also unstable. The yaw motion increases
slightly each stride, influencing the forward motion of the
legs until the robot fails by falling backward or making heel
contact too early.

This shows that the pelvic compensator successfully
eliminates the undesired 3D motions, so that the legs
practically move as if in a 2D environment. This also has a
positive effect on the stability of the 3D walker. Figure 13
shows the eigenvalues of the manually tuned 3D model with
pelvic body, which are all inside the unit circle. The
eigenvectors belonging to the six eigenvalues closest to the
unit circle mostly show the yaw and roll motions of the legs
and the pelvic body. This can also be deduced from
comparison of this figure with the stability plot of the 2D
version (Figure 11). Note that the extension of the 2D
walker with 3D motions not only introduces new eigen-
values, but also slightly changes the numerical values of the
previously existing eigenvalues.

5. CONCLUSION
A 3D passive dynamic walker can be successfully compen-
sated with the aid of a pelvic compensator body mounted on
the hip-axle. The extra 3D motions, yaw and roll, are shifted
from the legs to the pelvic body, so that the robot walks in
a straight line, without falling over sideways. This nearly 2D
leg motion results in a stable cyclic walking motion.

Our research shows that a 3D passive dynamic walker can
be stable. However, the eigenvalues as presented here are
still quite close to the unit circle, the boundary to instability.
Our future research will aim at finding a more robust 3D
model, followed by the construction of a prototype.

The choice of foot contact model is a very important
factor for the outcome of the simulations, and should
receive a detailed study.

The interaction of the different 3D motions exponentially
increases the complexity of the model behaviour. Under-
standing the characteristics of 3D passive dynamic walkers

Fig. 12. Projection of the path of the center of mass on the floor. Without compensation (gray), the zigzag walking motion fails after eight
steps. With a pelvic compensator (black) the robot walks straight and stably.

Fig. 13. Stability of the semi-3D model with a yaw compensator.
The * indicates the extra eigenvalues from the extension of the 2D
version to the 3D model with a pelvic compensator body.
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will allow us to apply this energy-efficient concept in real-
world applications.
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