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Abstract-Direct dynamics computer simulation is gaining importance as a research tool in the biomechan- 
ical study of complex human movements. Therefore, the need for general-purpose software packages with 
which the equations of motion can be derived automatically and solved numerically is growing. In this paper 
such a method is described: SPACAR. The method is compared to well-known commercially available 
software packages. On the basis of the results obtained on a test problem simulated with both SPACAR and 
DADS, it is concluded that both methods are accurate; DADS is much faster. The user-friendliness of 
SPACAR is less than that of DADS. However, SPACAR has two major advantages. First is the basic 
deformability of all elements, which allows handling of all kinds of problems within a unified framework; 
second is the full availability of the source code, which allows the experienced user to broaden the scope of 
possibilities to any extent. 

INTRODUCTION 

A large part of biomechanical research is aimed at under- 
standing the organization of gross human movements. Such 
movements involve a number of body segments that interact 
with each other and with the environment. In recent years, 
computer simulation of such movements is performed more 
and more often. It is felt by many researchers that direct 
dynamics computer simulation is a valuable tool to increase 
the depth of understanding of complex human movements 
(Hatze, 1981; Zajac and Winters, 1990). Unfortunately, the 
formulation and numerical solution of the equations of 
motion of a multi-body mechanical system is not a simple 
task. In our view, this fact should not restrict the use of direct 
dynamics simulation as a research tool to those researchers 
who can solve the theoretical and numerical problems 
involved. In other words, a growing demand exists for 
general-purpose software packages: such packages allow the 
researcher to focus on his biomechanical problem without 
being cluttered up with numerical methods. 

In the past 20 years, a substantial amount of work has been 
done on the formulation of generally applicable computer- 
oriented methods for the derivation and solution of the equa- 
tions of motion of three-dimensional multi-body systems. 
The state of the art in multi-body dynamics-computer 
software is reviewed by Haug (1984, 1989) and Schielen 
(1990). At present a number of general-purpose software 
packages is commercially available; the most well-known are 
ADAMS (‘Automated Dvnamical Analvsis of Mechanical 
Systems’, Mechanical Dydamics Inc., And Arbor) and DADS 
(‘Dynamical Analysis and Design of Systems’, Computer 
Aided Design Software Inc., Oakdale). These methods allow 
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both rigid and deformable elements, which may be connected 
in both open and closed loops; the equations of motion are 
derived numerically using absolute coordinates and a 
Newton-Euler approach. Both software packages are appli- 
cable to a wide class of problems; both are characterized by a 
user-friendly interface. Nevertheless, recently significant 
shortcomings of DADS (when applied in the field of bio- 
mechanics) were noted by van den Bogert (1990). 

The aim of this paper is to describe a less well-known 
general-purpose method for generation and numerical solu- 
tion of the equations of motion of multi-body mechanical 
systems: SPACAR. SPACAR resembles DADS and ADAMS 
in its general characteristics. However, it differs considerably 
in both theoretical basis and development/distribution phil- 
osophy. Therefore, we expect that its description is inter- 
esting to biomechanists involved in direct dynamics simu- 
lation. 

In our view, the following criteria (presented in order of 
importance) should be used when comparing general- 
purpose software packages for direct dynamics simulation: 

-Flexibility: although we only consider general-purpose 
packages, this does not mean that, using such packages, 
everything is possible [see van den Bogert (1990) for ex- 
amples]. Furthermore, because of commercial interests, the 
user is in many cases not given opportunity to adapt the 
software himself. 

-Accuracy: the system of differential equations governing 
the movement of the human body is in many instances 
unstable. Therefore, local numerical accuracy must be very 
high and extreme care must be taken when applying 
numerical integration. 

-User-friendliness: although, due to the complexity of the 
subject, a considerable time investment from the software 
user may be expected, user-friendliness is an important 
characteristic. Especiallv, flexibilitv in the definition of the 
model and the bobndari conditions as well as in output data 
management is important. 

-Calculation speed and numerical efficiency: the import- 
ance of these depends strongly on the complexity of the 
models used, the number of simulations to be performed 
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(which can be high when, for example, dynamic optimization 
is considered) and the available hardware. 

In this paper, first a global description of SPACAR is 
given; next, SPACAR is compared with DADS and ADAMS 
using the criteria mentioned above. In part, this comparison 
is based on simulations of the behavior of an example model, 
which were performed with both SPACAR and DADS. 

THE SPACAR APPROACH 

SPACAR is a computer subroutine package (written in 
FORTRAN 77) for the analysis of mechanical engineering 
problems, developed at the Technical University of Delft (van 
der Werff. 1977: Schwab. 1983). With SPACAR. the behavior , , 

of systems of two-dimensional/three-dimensional deform- 
able/rigid bodies, connected in open/closed loops, can be 
simulated. SPACAR is based on the finite element method, 
which implies a discrete approximation to a continuous 
problem. The finite element method is characterized by 
absolute coordinates, a Eulerian approach and numerical 
equations. Thus, in its general characteristics SPACAR is 
comparable to commercially available methods such as 

DADS and ADAMS. 
The main text of this article provides a global description 

of the method only; for a mathematical description of the 
method, the reader is referred to the Appendix. 

In SPACAR, the direct dynamics problem is split into two 
distinct parts: 

(1) Kinematics: calculation of the position, velocity and 
acceleration of the entire system given the position, velocity 
and acceleration of a subset of the system variables. This 
subset of variables that can be chosen freely by the user is 
referred to as the degrees-of-freedom (Of). 

(2) Dynamics: calculation of the accelerations of the D,, 
given all positions, velocities and forces. 
In SPACAR a model is constructed by assembling different 
types of elements, just like using a Meccano construction kit. 
As an example, we will construct a planar model of the 
skeletal system of a human being performing a two-legged 
vertical jump. The actual system [Fig. l(a)] can be described 
by four rigid segments: feet, lower legs, upper legs and head- 
arms-trunk (HAT). These segments are connected in three 
joints: ankle, knee and hip. One extra ‘joint’ is introduced 
between the feet and the ground to describe the orientation of 
the entire system [Fig. l(b)]. Ahatomically, this joint would 
correspond to the metatarsophalangeal (MTP) joint. 

Each segment is modelled using a BEAM element. This 
type of element has three independent modes of deformation: 
elongation of the element, bending at one end point, and 
bending at the other end point. Obviously, the position of 
any rigid element in two dimensions can be described by 

three coordinates. For every independent deformation that is 
introduced, one extra coordinate is needed to describe this 
deformation. Thus, the planar BEAM, having three deforma- 
tions, must be characterized by 3 f3 =6 independent co- 
ordinates: x, y and fi of each end point [see Fig. l(c)]. In cases 
where rigid BEAMS are needed, the deformations are simply 
set to zero. Thus, a rigid BEAM is described by six co- 
ordinates and three constraint equations specifying that the 
deformations equal zero. Note that the number of D, of an 
element not fixed to the reference frame (and, for that matter, 
of a multilink system of elements), equals its number of 
coordinates minus the number of deformations defined to 
equal zero. 

Each joint is modelled using a HINGE element [see 
Fig. l(d)]. This type ofelement has the torsion in the HINGE 
as its only deformation. Interestingly, the HINGE is defined 
in such a way, that its position is not defined; it only has an 
orientation. As this orientation is described by one coordi- 
nate, and as it has one mode of deformation, in total the 
HINGE element can be characterized by two nodes, each 
having one b coordinate. 

In total, the finite element model of the jumper consists of 
eight elements: four BEAMS and four HINGES [see 
Fig. l(b)]. The connectivity of the model is obtained by 
giving elements nodes in common. For example, the coordin- 
ates of the proximal end of the lower legs are identical to the 
coordinates of the distal end of the upper legs. 

Kinematics 

When all eight elements are undeformable, the entire 
system is actually one rigid body. Thus, in case it is not in any 
way fixed to the reference frame, it should have three degrees- 
of-freedom (DJ. This can be checked by taking the difference 
between the total number of coordinates and the total 
number of deformations (since all deformations are now 
defined to be zero, see above). In this case, 5 x 2 (x, y of 
BEAM end points) +4x 2 (B of BEAMS, shared with 
HINGES) + 1 (B of ‘free’ end of HINGE at the MTP joint) 
= 19 coordinates minus 4 x 3 (BEAM) +4 x 1 (HINGE)= 16 
deformations indeed equals 30,. The system can be fixed in 
two-dimensional space by prescribing the coordinates of the 
toe and the orientation of the ‘free’ end of the HINGE at the 
MTP joint. 

In SPACAR, any subset of the defined coordinates and/or 
deformations can be chosen as D,, as long as the elements of 
this subset are independent and the number of elements 
equals the number of D,. For our example, it is convenient to 
choose the deformations of the four HINGE elements as D,; 
this subset of the set of deformations of the mechanism is 
denoted by E,. By definition, all coordinates are functions of 
D,: X = F(E,,,) where X is the vector of coordinates and F is 

(4 b) 

PLANAR BEAM PLANAR HINdEl 
coordinate@: 6 coordinatea: 2 
rigid DOF’a: 3 
deformationa: 3 

rigid DOF’B: 1 
deformation@:1 

(e) (d) 

Fig. 1. (a) Human subject performing vertical jump; (b) finite element method model of the human subject; 
(c) description of the BEAM element; (d) description of the HINGE element. 
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the function relating X to E, [see equation (Al)]. Unfortu- 
nately, this (highly nonlinear) function F cannot be derived in 
a standard way. However, given a (initial) position of the 
entire system, the first and second partial derivatives of all 
coordinates with respect to all D, can be obtained in a 
standard way and are calculated in SPACAR: 

DF=aX/aE, and D*F=a*XJaEk, 

where D and D2 symbolically represent the first and second 
differential operators [see equations (A5)-(A8)]. These ma- 
trices of instantaneous values of partial derivatives, some- 
times referred to as Jacobians, are the first- and second-order 
transfer functions. The first-order transfer function gives (in 
the current position) the ratio between the change in the 
coordinates and a (small) change in D,. Note that these ratios 
(partial derivatives) depend strongly on position. The zero- 
order transfer function, F in X = F(E,), cannot be calculated 
directly; in SPACAR it is obtained with help of the initial 
position and the first- and second-order transfer functions 
using an iteration scheme [see equation (A13)]. 

Given the motion in the D, and the first- and second-order 
transfer functions, the motion of the entire system is deter- 
mined, therefore, the transfer functions contain all the kine- 
matic information of the system. 

In a dir&t dynamics analysis, the accelerations of the D, 
are to be calculated, given the model constitution and the 
position and velocity of the D,. In SPACAR this is done as 
follows. First, the position and velocity of the entire system 
are calculated from those of the DI with help of the transfer 
functions in the way described above. Next, all active forces 
are calculated, which is possible since, in general, forces are 
functions of time, position and/or velocity. Again using the 
first-order transfer function, these forces can be mapped into 
the D, force space. The mass matrix is mapped in the same 
way. Using the d’Alemberts’ principle, a system of linear 
equations results that can be symbolically represented as: 

Me, = F, 

where M is the (mapped) mass matrix, &, is a vector of the 
accelerations of the D, (in our example all D, are deforma- 
tions) and F is a vector of (mapped) active forces [see 
c.quation (A15)]. This system of equations can be solved for 
E,, the acceleration of the Df [see equation (A16)J Sub- 
sequent positions and velocities of the D, are obtained by 
numerical integration. The reader is referred to the Appendix 
for a more detailed description of the mathematics involved. 

Using the same approach, inverse dynamic problems can 
be solved as well: in that case, the position, velocity and 
acceleration of the system at each instant of time are given, 
and the forces to be delivered by the D, are calculated. In such 
applications, there is no need for numerical integration, as 
the movement is already known. One of the main problems in 
inverse dynamics is how to numerically differentiate the 
usually noisy recorded positional data in order to obtain 
accurate velocity and acceleration data. 

COMPARISON OF SPACAR WITH EXISTING 
SOFTWARE PACKAGES 

Although, as stated above, SPACAR, ADAMS and DADS 
are comparable in their general characteristics, a number of 
differences exist between SPACAR and the other methods 
mentioned. These differences are largely related to the fact 
that the developers of SPACAR were driven mostly by 
academic interest. Thus, at present SPACAR is nothing more 
than a set of subroutines, the source code of which is fully 
available to SPACAR-users. Readers interested in obtaining 
SPACAR should contact the second author of the present 

paper. 

Here, SPACAR is compared to DADS. This comparison is 
restricted to two-dimensional applications of both methods. 
For an exampie of a three-dimensional application of 
SPACAR, see van der Helm (1991), who succeeded in model- 
ling the highly complex kinematics of the shoulder girdle. 
The comparison made here is based OR the criteria formu- 
lated in the introduction. 

Flexibility. Recently a number of limitations of DADS 
were enumerated by van den Bogert (1990), who used DADS 
extensively in two-dimensional simulations of horse walking; 
to our knowledge, these problems apply to ADAMS as well. 
The limitations are 

-adding or removing constraints during simulation is 
impossible; this would be necessary to create a ‘hard’ connec- 
tion between system and environment; 

Differential equations cannot be used in ‘user force’ 
routines; thus, no straightforward method is available to 
drive a model by muscles whose behavior is governed by 
ordinary differential equations (ODES); 

-a stiff integration algorithm cannot be substituted for 
the standard algorithm. 
Furthermore, in DADS no straightforward method is avail- 
able to define conditions under which the simulation is to be 
terminated. Fin&v. embeddina DADS in optimization soft- 
ware is not straigiiforward (van Soest and-van den Bogert, 
1991). 

In the standard version of SPACAR, constraint manipula- 
tion and the use of‘additional’ ODES was not possible. As the 
need of such facilities arose, a subroutine was developed for 
constraint manipulation [see van Soest et al. (1992)]; fur- 
thermore, theory has been developed concerning impulse 
equations which allow correct handling of impact (Schwab, 
personai communication). Also, a straightforward method 
for definition of ‘additional’ ODES that are integrated in 
parallel with the mechanical system was created by the first 
author of the present paper. An example of an application 
in which such additional ODES are used is given by van 
Soest er al. (1992). Finally, the subroutine containing the 
integration algorithm could be readily replaced in the stand- 
ard version. Definition of conditions of termination, as well 
as the embedding in optimization software, are straightfor- 
ward in SPACAR. 

Accuracy. By stating that methods should be accurate, we 
mean that if no constraints are imposed on calculation time, 
the correct solution should be obtained. Formally, for any 
but the simplest models, it is not possible to prove that a 
solution is correct. However, when different methods yield 
identical solutions, this is a strong indication that these 
solutions are correct. When the accuracy of DADS and 
SPACAR are judged on this basis (from the numerical 
example presented below), it is concluded that both methods 
are accurate. It must be noted that although local accuracy in 
integration is specified by the user in the algorithms used, 
global accuracy depends on the stability of the system of 
ODES. This stability is essentially a model property. Al- 
though, in general, numerical integration is not advised for 
unstable systems (Shampine and Gordon, 1975), the results 
obtained here as well as elsewhere (van Soest et al., 1992) 
show that when care is taken, it is possible to obtain accurate 
results for unstable systems. 

An interesting difference between SPACAR and DADS 
that might affect accuracy is that in SPACAR the co- 
ordinates used as D, form a fixed subset specified by the user, 
whereas in DADS the D, are selected (and possibly changed) 
by the software. Therefore, SPACAR requires more insight 
from the user. In DADS, the user is protected from making a 
poor choice; as a consequence, some time is spent by the 
software on monitoring and possibly changing the D, On the 
other hand, problems due to the occurrence of kinematic 
singularities are solved by changing the D( in DADS, whereas 
in SPACAR kinematic singularities may lead to a crash. In 
practice, however, we have never experienced a crash of 
SPACAR. 
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User-friendliness. As stated before, SPACAR is nothing 
more than a set of subroutines. No attention was given to 
development of a user-friendly interface in SPACAR. Thus, 
in SPACAR a straightforward wav for model definition is 
available and limited flexibility is present in both graphical 
and numerical output organization. In fact, any user of 
SPACAR is expected to adjust relevant subroutines to his 
particular situation. In contrast, both ADAMS and DADS 
are characterized by a high degree of user-friendliness, in- 
cluding pre- and post-processors. 

Calculation speed and numerical eficiency. In order to 
assess calculation speed and numerical efficiency of both 
SPACAR and DADS, a test model was created. The behavior 
of this test model was simulated with both methods. Model 
description and simulation results are given below. From the 
results obtained with this model, it can be concluded that a 
large difference in calculation speed exists between DADS 
and SPACAR. At a working accuracy (approximately five 
correct digits in the angular accelerations) calculation times 
were 10 and 202 s for DADS and SPACAR, respectively. A 
priori, it was expected that DADS would be superior to 
SPACAR with respect to calculation speed: due to the 
underlying theory in SPACAR extra variables related to the 
deformations of the bodies are introduced, even when these 
deformations are in fact not used. However, it was not 
expected that speed ratio would be of the order of 1: 20. A 
large part of this difference in speed probably results from the 
fact that the developers of SPACAR paid more attention to 
theoretical aspects than to numerical efficiency in developing 
its present version. Significant improvements in calculation 
speed have been established by substitution of more efficient 
linear algebraic algorithms (van der Helm, personal com- 
munication). 

It must be stated that the comparison made here is based 
on a two-dimensional model. Modelling and simulation in 
three dimensions contain extra problems of such significance 
that, in our view, the comparison made here should not be 
extrapolated to applications in three dimensions. 

NUMERICAL EXAMPLE: COMPARISON OF 
SPACAR AND DADS 

A comparison of calculation speed and accuracy between 
SPACAR and DADS was made using the skeletal model 
developed above [Fig. l(b)]. Using this model, it was in- 
tended to perform simulations of vertical jumping. Vertical 
jumping was chosen because it was expected that this is an 
unstable task, hence differences might result in the solutions 
obtained with these methods. In order to perform a direct 
dynamics simulation of vertical jumping, the model was 
equipped with simple moment actuators in hip, knee and 
ankle joints. After some experimentation, it was decided to 
use constant joint moments, primarily because constant joint 
moments were found to result in a high-degree of instability 
of the system. The values of these joint moments were chosen 
in such a way that a coordinated jump resulted. Joint angles 
(between 0 and n radians) were defined as follows: an angle of 
zero indicates full flexion at the hip and the knee and full 
dorsiflexion at the ankle; the toe angle was defined as the 
smallest angle between the feet and the horizontal. Segmental 
parameter values of the model are shown in Table 1. Joint 
moment values and starting conditions of the simulations 
(angles and angular velocities in the joints), are presented in 
Table 2. A value of 9.81 was used for gravitational acceler- 
ation. 

In this simulation the heel is never in contact with the 
around. Given this fact, and modelling around contact at the 
yoes as a frictionless hinge joint, the model has four D, until 
the instant of takeoff. As only the push-off phase will be 
simulated in this example, there is no need to add or remove 
constraints during the simulation. 

Table 1. Segmental parameters. Icm is moment of inertia, 
relative to the segment’s center of mass. CMPROXREL is 
position of the segment’s center of mass, expressed as a 
fraction of segment length, measured from the proximal end 

of the segment 

Length Mass Icm CMPROXREL 
(m) (kg) (kg m’) 

Foot 0.16 2.0 0.01 0.4 
Lower leg 0.40 6.0 0.10 0.4 
Upper leg 0.44 14.0 0.30 0.4 
Trunk 0.82 45.0 2.50 0.4 

Table 2. Joint parameters. MTP indicates meta- 
tarsophalangeal joint. pPt= D indicates joint angle at 
the start of the simulation. Initial joint angular 

velocity was 0.0 for all joints 

Joint moment 
(N m) 

rp,=o 
(rad) 

MTP 0 0.6 
Ankle 170 1.5 
Knee 144 1.5 
Hip 260 1.4 

The behavior of this model was simulated using both 
SPACAR and DADS, in order to check if identical results 
were obtained and in order to get an impression of the trade- 
off between global accuracy and calculation time. Calcu- 
lations were performed on an Apollo DN 2500 computer, 
which runs at approximately 0.5 Mflops. 

Two types of error may occur when performing direct 
dynamics simulations with DADS or SPACAR. The first 
type of error concerns the algebraic constraint equations, 
that are solved iteratively. These constraint equations are 
formulated in terms of nodal coordinates in DADS and in 
terms of element deformations in SPACAR [equation 
(A13)]. The second type of error concerns the numerical 
integration of the state equations. In DADS and SPACAR, 
both types of error are locally controlled by the user. The 
global effects of the allowed local errors depend, of course, on 
the stability of the state equations, which is a model property. 

For DADS, the first type of accuracy did not have an 
influence for any reasonable value of the parameter involved. 
For SPACAR, this accuracy was found not to influence 
the obtained solution, as long as the required accuracy 
was higher than the integration accuracy. Integration algo- 
rithms used in both methods are based on Shampine and 
Gordon (1975); these variable-order, variable-step&e 
Adams-Bashford predictor/Adams-Moulton corrector al- 
gorithms are characterized by control of the local integration 
error up to a user-defined accuracy. As a first step, this local 
accuracy was increased by factors of 10 until no further 
change in model behavior could be obtained. The solutions 
converged for both DADS and SPACAR. The final ‘refer- 
ence’ solutions thus obtained with both methods were ex- 
tremely close to each other. Time histories of the joint angles 
are shown in Fia. 2. When presented aranhicahy, final 
solutions obtained with SPACAR and DADS cannot be 
discerned. As can be seen from this figure, the behavior is 
unstable, which makes this model a severe test for numerical 
methods such as SPACAR and DADS. 

Next, the trade-off between calculation speed and global 
accuracy was studied. Global accuracy was defined here in 
terms of the difference in angular accelerations between the 
actual solution and the reference solution. In fact, the sum of 
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Fig. 2. Simulated joint angles for hip (-), knee ( ... .), 
ankle (---) and toe (-.-‘-.) vs time for the test model as 

described in the text. 
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Fig. 3. Global accuracy vs calculation time for DADS (---) 
and SPACAR (-) in a typical two-dimensional model. See 

text for details. 

the square of these differences at t =0.24, which is close to 
takeoff, was used. Global accuracy was manipulated by 
substituting different values for the parameter defining the 
required local accuracy in numerical integration. Plots of 
global accuracy vs calculation time are presented in Fig. 3 for 
both SPACAR and DADS. From this figure it can be seen 
that DADS is approximately 20 times faster than SPACAR 
at any level of global accuracy. 

CONCLUSION 

The global characteristics of SPACAR are comparable to 
those of commercially available methods such as DADS and 
ADAMS. SPACAR has two major advantages. The first 
concerns the theoretical basis, i.e. the basic deformability of 
all elements, which allows handling of all kinds of problems 
within a unified framework. A second advantage is the 
availability of the complete source code, allowing the experi- 
enced user to tune the software to his specific demands and to 
broaden the scope of possibilities in cases where the standard 
version is too restrictive. For the inexperienced and occa- 
sional user, the absence of a user-friendly interface in 
SPACAR is a disadvantage. It was shown for a typical two- 
dimensional model that both SPACAR and DADS yield 
accurate results. With respect to calculation speed, DADS 
was found to be far superior to SPACAR. The present 

comparison was made on the basis of a two-dimensional 
example. When direct dynamics simulations of large three- 
dimensional models are considered, another check and com- 
parison seem worthwhile. 
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APPENDIX 
MATHEMATICAL FORMULATION OF SPACAR 

NOMENCLATURE 

Column vector of coordinates of a single 
element 
Column vector of deformations of a single 
element 
Column vector of coordinates of an entire 
mechanical system 
Column vector of deformations of all elements 
in a system 



1224 Technical Note 

Fig. Al. The planar mechanical system used in the numerical 
example throughout the Appendix. Encircled numbers in- 
dicate element number; force F in Newtons; masses m in 

kilograms. 

x0, xc, x, Fixed, calculable and input parts of the system 
X vector 

E,, E,, E, Fixed, calculable and input parts of the system 
E vector 

C Continuity function defining e = C(x) 
F Zero-order transfer function defining X 

=W,, E,) 
D, D* First. second differential onerator 
&a* 
F 
S 

. . 
t,p 

First; second variation r 
Column vector of external forces applied at X 
Column vector of stresses due to deforma- 
tions E 
First derivative of X, E with respect to time 
Second derivative of X, E with respect to time 

The formulation of the method will be limited to the two- 
dimensional case. It is emphasized that the method is fully 
developed for three-dimensional systems as well. The method 
will be illustrated with a numerical example. As the example 
presented in the main text is too complicated for this purpose, 
another example system is presented in Fig Al. This example 
does not represent any real physical system; it is merely 
constructed to illustrate the aspects of SPACAR introduced 
here. 

BASICS 

(1) The position of an element is described by a column 
vector of coordinates x. 

Example. The position of element 1 (Fig Al) is given by 
[x,7 Y,lxg9 YJ. 

(2) A type of element is defined by its number of co- 
ordinates and the way in which the column vector of 
deformations e of the element type depends on x. 

Example. The element type ‘TRUSS, of which elements 1,2,3 
(Fig. Al) are examples, has four coordinates: the x and y 
coordinates of its end points. Three are needed to define the 
position of a rigid TRUSS. Therefore, one deformation mode 
should be defined: elongation along a straight line. 

(3) Deformations are a function of the coordinates of the 
element, This function is called the continuity equation of the 
element type: 

e=C(x). (Al) 

These continuity equations are highly nonlinear. 

Example. The instantaneous length of the TRUSS 2 with end 
points q, r is: 

When its rest length I, is defined to be 2.0, the continuity 
equation is: 

e2 = (x,-x,)‘+(y,-_~~)~ -I, yielding 

(4) First and second derivatives of the continuity equa- 
tions of each type of element can be obtained, yielding: 

Se = DC(x)Sx, (A2) 

62e=DC(x)62~+D2C(x)dxZ, (A3) 

where DC and D’C are position-dependent matrices of 
partial derivatives (‘Jacobians’) defining linear and bilinear 
maps, respectively. 

Example. Differentiating the continuity equation for 
TRUSS 1 with respect to its nodal point coordinates 
x = Ix,, yp, xpr y, JT yields: 

DC(x)=C-cos(rp),-sin(g), cos((o), sin(p)], 

where cp = arctan [(y,- y&/(x, - xr)] is introduced to sim- 
plify notation. Thus, in the example position this yields for 
element 1: 

DC([x,, y,,x,, y,lT)=[-0.6, -0.8,0.6, 0.81 and 

Se,=[-0.6, -0.8, O.~,O.~][SX,,~~,,~X,,SY,]~. 

(5) For a multilink system, vectors X and E (note capitals) 
can be defined to be the union of all element x vectors 
(coordinates may be shared by elements) and the juxtapo- 
sition of all element e vectors (deformations are not shared). 

(6) Both X and E can be split into three distinct parts:fixed 
(subscript ‘0: changes are zero), calculable (subscript ‘c’) and 
input (subscript ‘m’, the independent movable variables). 

Example. The system has two degrees of freedom, chosen to 
be x, and es; thus, 

X=Cx,, Y,,. xI, yq, x,, Y,, x,, y,lTV E= Cer, e2, es]‘, 

which can be split into X,, X,, X, and E,, E,, E,, respect- 
ively: 

Xo=L-Yp, x4> Y,7 x,7 Y.lT, X,=Cu,, &IT* Xm=CxJ, 

E,=M, E,=CeJ, E,=CeJ. 

(7) The input variables X,, E, by definition solely deter- 
mine X and E: 

X=Fx(X,, E,), E=F,(X,, E,). (A4) 

The unknown maps F, and Fs are highly nonlinear. They are 
called zero-order transfer functions. 

(8) First and second derivatives of the zero-order transfer 
function must exist: the first-(DF,, DF,) and second- 
(DZF,, DZF,) order transfer functions, respectively: 

6X = DF, [SX: 6E;f, 1’. (A5) 

6E = DF, [SX: 6E:]=, (A6) 

a2X =DF, [6*X; 6’E;IT 

+ D’F, [SX’, SE:lT [6X’, 6E;lT, 647) 

6*E = DF, [S’X: a*ET,]’ 

+D2F, [SX: c5E:-j’ [SX; GET,]? (A@ 

KINEMATICS 

The kinematics problem is to calculate the movement of 
the entire system given the movement of the degrees-of- 
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freedom X,, E,. In other words: to obtain the maps F,, F,, 
DF,, DFr, DfF,, DzFe. To avoid complexity in notation, 
the second-order transfer function will not be derived. 

Combining equations (Al) and (A4), we obtain for the 
entire system 

Fa(Xm. &J=C(F,(X,, E,J) (A9) 

and similarly, combining equations (A2), (A5) and (A6), 

DF,(X,, E,)=DCDF,(X,, E,,J. W-I 

Using equation (A9), the calculable deformations E, (which 
concern overdetermined parts of the system) can be obtained 
as soon as F, and thus X is known. 

Example. In the starting position of the example system, 
where ah coordinates are given, ez can be calculated using the 
continuity equation of this element: 

When the part concerning E, is removed from equation 
(AlO) and the remaining part is split up in the way introduced 
before we can write: 

(Al 1) 

where, for example, D,, Ca, stands for the matrix of partial 
derivatives [gE,/aX,]. 

When X is entirely known (which is supposed to be the case 
in the starting position) all partial DC matrices can be 
calculated. 

Example. Using the first derivative of the continuity equation 
for TRUSS derived earlier (DC(x) = [ -cos(rp), -sin@), 
cos(q), sin(p)]), the partial DC matrices in the present 
position are: 

DXoCBo=Dr,.x,,y..x..ys C,,=[-0.8,0.6,0,0,0], 

Dx, Gr, = DYP,+.Y+Y~C~. = ro, 90.0, 1.4 0.01, 

Dx~Go=DY+.G = [0.8, 01, 

Dxc CE, = D,., x, C,, =[O, -1.01, 

Dx_Ca,=D,,C,, = [ -0.61, 

D, G, = D+ C,, = CO]. 

Furthermore, the following partial DF matrices are known 
by definition: 

DF,, = raR,/ax, aE,/aE,l = 1 IO), {O) I, 

DF,,,, = caE,/ax, aE,/aE,l = c {O), { 1) I, 

~Fx,=cax,/ax, ax,/aEd==C{o), @i, 
~~,_=rax,/ax,ax,/aE~= c{lh m 

where, for example [ (0}, {l}] stands for a matrix consisting 
of blocks of zeros and ones, respectively. Thus the only 
unknown in equation (Al 1) is the partial map DFx=. Solving 
for DFx= yields: 

-[;;I:;;] DFxm]. (A12) 

Example. In the position shown, equation (A12) yields: 

The first-order transfer function has been determined; the 
second-order transfer function can be determined in a similar 
way. Unfortunately, the zero-order transfer function cannot 
be obtained in a similar way. However, given an initial 
position X0,,, and the desired change in X,, E,, a new 
position X,,, can be estimated after calculation of DF, and 
D2F, using a truncated Taylor expansion: 

X neWv=XO,d +DF, [6X’, SET,lT 

+D’F, [SX’, GET,IT [SX’, 6ET,lT’. 

R,., = C(X,,,). (Al3) 

The error made in this approximation is reflected in the 
amount by which the E,, part of E,,, differs from zero. An 
iteration scheme is used to reduce this error. In most cases 
convergence to a relative error smaller than 0.00001 occurs 
within five iterations. 

Example. Suppose we wish to know X for [XZEZ]’ 
= [x, eJT = [ -2.9 l.llT. As [X’, ET,]’ in the known starting 
position is [ - 3, llT if we deline the rest length of element 3 to 
be 2, the desired [SXZ 6E:]‘= [6x, 8eJT = [O. LO.1 JT. Using 
the already calculated DF,= we can estimate X,,-_ (omitting 
the second-order term) to be: 

Using the TRUSS continuity equation, e, (which should be 

zero) is calculated to be~%%6% 5x0.00156. 

DYNAMICS 

The second part of the problem concerns the derivation of 
the equations of motion governing the behavior of the 
system. 

In the derivation of the equations of motion two concepts 
are combined: 

-thejrst- and second-order transferfunctions as described 
earlier, which together determine the velocity and acceler- 
ation of the entire system as a function of the velocity and 
acceleration of the degrees-of-freedom; 

dhe principle ofvirtual work which in its most basic form 
stat& (Meriam, 1975) that “The virtual work done by 
external active forces on an ideal mechanical system in 
equilibrium is zero for any and all virtual displacements.” 
Extending this principle to include elastically deformable 
elements and inertial forces, it can be written in matrix form 
as: 

6Xx [F + Fi,c,aJ = GETS, L414) 

which should hold for all kinematically allowed SX, SE; F, S 
and F,ncni. represent the vectors of active forces, internal 
stresses and inertial forces, respectively. 

The general term Finer,,, can be replaced by -ML% (with M 
a mass matrix) since this is the only inertial term. 

Example. With point masses of 1 and 5 kg at nodes 4 and r, 
respectively, the mass matrix is given by: diag 

en 25:10-I 
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((0, 0, 1, 1, 5,5,0,0}), where diag (a) is detined to be a square 
matrix with nonzero entries equalling a along the main 
diagonal. 

Combining equation (A14) with equations (AS) and (A6) 
yields: 

[SX: SG] DF; [F-M f] = [SX: 8ET,] DF;S, 

which should hold for all kinematically allowed [8X; 6Ez]. 
However, this vector concerns the degrees-of-freedom only, 
and may, therefore, by definition have any value. Therefore, 

DF; [F-MXJ=DF;S. (AI5) 

By combining equations (A15) and (A7) we obtain after 
some rearrangement: . . 

[DF:MDF,]- ; 
[ 1 =[DF;F]-[DF;S] 

m 

&n 
1 E, 

It can be seen that singularity of the part [DF’;MDF,] 
occurs when modalities of movement are present that have 
no mass attached to them. 

Under the condition that [DFiMDFx] is nonsingular 
this equation can be solved for X,, E,: 

iim 
[ 1 i, 

-DFwD~F~[~~][~%]]. (A16) 

Fig. A2. Block diagram of calculations in SPACAR. Num- 
bers in blocks refer to equation numbers in the appendix. The 
block marked INT represents the integration algorithm; the 
block marked * may contain any (user-defined) functions 

defining forces and stresses. 

time = t, first- and second-order transfer functions are calcu- 
lated using equation (A12). Using the first-order transfer 
function, the velocity of the entire system is calculated from 
the velocity of the degrees of freedom, using equations (AS) 
and (A6). Now all external forces, internal stresses and 
driving forces/stresses can be calculated. Next, accelerations 
of the degrees-of-freedom are calculated using equation 
(Al6). The accelerations and velocities of the defrees-of- 
freedom are integrated numerically to yield the velocity and 
position of the degrees-of-freedom at time = t + St. Finally, 
the new position of the entire mechanism is calculated using 
equation (A13). 

Example. Suppose an external force Fr# = - 10 N is present. 
Furtherilet’s suppose that the stresses in elements 2, 3 are 
governed by 5, = lOOC,; 5, = 50~. Finally, let’s suppose the 
velocity of the system is zero. Now we set up equation (A16), 
omitting the parts concerning X,, E,. 

F Ye,X..xp=C-109 0, olTy M,.+,,=diag (11, 5, O)), 

S e&e, = CO> 5m 

Because of the zero velocity, the last part of equation (A16) 
can be omitted: 

At present, a variable-order variable-step&e Adams- 
Bashford predictor/Adams-Moulton corrector integration 
algorithm (Shampine and Gordon, 1975) is used for nu- 
merical integration. This algorithm is efficient and robust 
furthermore, it has been shown here that it yields correct 
solutions for unstable systems. Nevertheless, it can be substi- 
tuted by any other integration algorithm if desired. 

Although this may not be obvious from the example used, 
it must be realized that the vectors F and S can be any (user- 
defined) function of time, position and velocity of the mech- 
anical system. Also, actuators (for example, torque actuators 
operating on a joint angle) can be incorporated using stand- 
ard elements. An efficient way to incorporate Hill-type 
muscle models as actuators has been developed [see van 
Soest et al. (1992)]. 

It is obvious that the potential of a method like SPACAR 

[Liz” -Y :I[ -l+r-::: x54 

[tl=C’“’ !-‘K51-[5~11=~~“” :.,I[ -50 J L-lO.OOJ 

-7.51Jl3.331, 

which can by inspection be seen to be correct. Note from this 
example, that (as expected) the second-order transfer func- 
tion determines the velocity dependency of the accelerations. 

SUhlMARY 

The entire calculation process can be summarized as fol- 
lows (Fig. A2). Given a position of the entire mechanism at 

depends strongly on the element types available. At present, 
the set ofelement types allows description of a large variety of 
mechanical systems. However, in case ‘special-purpose ele- 
ments’ are needed, they can be incorporated in SPACAR if 
their continuity equations plus first and second derivatives 
are available. Examples of development and use of highly 
complex special purpose elements in kinematical analysis are 
given by van der Helm (1991). 


