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Abstract--ln designing robots statical balancing is of great importance. It enables essential reduction of 
the required motor power. Elimination of significant reduction of the gravity load at a powered joint can 
also lead to a simpler and more effective control system. It is shown that this problem can be formulated 
as an optimization problem. As objective function the average force on the gripper in the working area 
is used. It is shown that those forces can easily be derived with the aid of a Computer Algebra System. 
The lengths of the links and angles between them as well as the stiffness of springs can be considered as 
design variables. It is shown that a general design program based on Monte Carlo methods and genetic 
algorithms, that has a graphical interface that allows the user to modify search intervals, is very 
appropriate to these kinds of problems. As an example an industrial robot with 6-DOF is treated. The 
robot has a spring balancing system that has to be optimized. The robot with the parameters of its 
balancing system found this way is evaluated with an existing multibody dynamics program SPACAR 
that simulates the movements of the robot and calculates the forces at its powered joints. With the aid 
of MATLAB the forces in the working area are plotted in a 3D figure. The method described in this article 
is general and very appropriate to solve problems in practice without simplifications. © 1998 Elsevier 
Science Ltd 

1. I N T R O D U C T I O N  

To keep a r o b o t  in stat ic equi l ibr ium,  forces are needed at  the powered  joints .  These static gravi ty  
forces are  caused by the masses  o f  the robo t  links and  by the mass  o f  the pa y loa d  at  the gripper.  
The mass  o f  the r o b o t  links is often 10-20 t imes as large as the mass  at  the pay load .  Balancing 
o f  the r o b o t  l inks (the r o b o t  mechanism)  is often sufficient. The  ba lancing  system should  p roduce  
such forces that  should  be able to el iminate,  or  at  least essential ly reduce,  the stat ic gravi ty  forces 
at  the powered  joints .  

In pract ice  two basic ways o f  ba lancing  are most ly  used: ba lancing  by springs and ba lanc ing  by 
masses (using added  counter -weights  or  by links mass  redis t r ibut ion) .  The advan tage  o f  the 
ba lanc ing  by springs c o m p a r e d  to the ba lancing  by counter-weights  is connected  with the fact tha t  
the weights o f  the bui l t - in  springs or  cyl inders  c o m p a r e d  to the link weights can be neglected and 
therefore  the gravi ty  loads  are e l iminated  or  reduced wi thout  changing  the mass  and inert ia  
pa rame te r s  o f  the r o b o t  mechanism.  In some cases a combina t ion  o f  spr ing and mass  ba lancing  
(especially mass  red is t r ibu t ion  o f  the links) m a y  result  in bet ter  solutions.  

When  designing a robot ,  the lengths o f  the links, angles between them and spring-stiffnesses can 
be cons idered  as ( independent )  design variables.  The average force on the gr ipper  in the work ing  
area  o f  the r o b o t  can be considered as object ive funct ion to be minimized.  In the ideal s i tuat ion 
all forces are  zero in this work ing  area.  

This means  tha t  we do  no t  search a local min imum,  we want  the g lobal  m in imum to be zero. 
F o r  this reason a genetic a lgor i thm is very appropr i a t e ,  as this finds a g lobal  op t imum.  In the 
fol lowing sections the spr ing ba lanc ing  system o f  an indust r ia l  robo t  A P R  20 (see Fig. 1) will be 
opt imized.  The  reader  has to bear  in mind  that  the me thod  descr ibed can be appl ied  to any robo t  
o r  mechanism to be designed to p roduce  a cer ta in  kinematic ,  static or  dynamic  behav iour  [1]. In 
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Section 2 the problem is formulated as an optimization problem, and the objective function is 
derived with the aid of Maple [2]. In Section 3 the optimization method is discussed and in Section 
4 the results for the robot APR 20 are given. In Section 5 these results are evaluated with a general 
multi-body program SPACAR [3] that is able to simulate the movements of any input-given 
mechanism, and that is able to compute the forces in any position. It is also shown that with the 
aid of a simple interface those forces can be plotted with the aid of MATLAB [4]. 

2. F O R M U L A T I O N  OF T H E  P R O B L E M  

It is easy to see that of the 6-DOF of the mechanism only two have to be balanced, namely q2 
and q3, see Fig. 1. When we assume a mass of zero at the gripper, q4, q5 and q6 have no influence. 
The rotation about the vertical axis (q 1) is already balanced when the robot is in a correctly vertical 
position. This simplifies the balancing considerably as the spatial robot can now be reduced to a 
planar mechanism with 2-DOF. It can be proved [5] that in the case of the massless links 6 and 
8 the static gravity forces at the degrees of freedom q2 and q3 caused by gravitation forces of links 
5 and 7 can be completely eliminated. The problem of the statical balancing of the robot taking 
into account masses of the links 6 and 8 will be formulated as an optimization problem. Spring 
mechanisms are used to balance the robot APR 20 (see Figs 3 and 4). Figure 3 shows statical 
balancing of link 7. The balancing moment is transmitted to link 7 by a mechanical belt and pulley 
transmission. The first pulley wheel of the transmission placed on the rotating base of the robot 
can rotate independently of  the rotation of link 5. The second one (of the same diameter) is attached 
to link 7. One end of the spring rod of this balancing mechanism is connected to the lower pulley 
by a revolute joint at W and a balancing spring 2 of constant stiffness k2 is placed between the 
other end of the spring rod and a joint at V2 (placed on the rotating base of the robot) which 
allows rotation and translation of the spring rod. Figure 4 shows the balancing mechanism of link 
5 which is similar to the previous one. The spring rod is connected to link 5 by a revolute joint 
at T. 

We have to find such parameters of both balancing mechanisms which minimize the forces Fx 
and Fy acting on point C (see Fig. 2). These forces have to ensure statical balance of the robot 
in any position of the robot gripper (M) in the working area of the robot EFGH. It should be 
noted that thanks to a parallelogram A CBD there is a simple relation between the position of the 
robot gripper (M) in the rectangle EFGH and the position of the joint C in the smaller rectangle 
E'F'G'H' .  

Fig. 1. Robot APR 20. 
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Fig. 2. Scheme of the robot APR 20. 

2.1. Variables 

In order to formulate the optimization problem mathematically we need to introduce a number 
of variables (see Figs 2, 3, and 4). In Section 2.5 we will see that many of the variables given below 
can be regarded as design variables of both balancing mechanisms of the robot. 

Fig. 3. Static equilibrium of the link 7. 



166 S. Segla et al. 

H7p - "  By 

e 1 

X ~-- 

Fig. 4. Static equilibrium of  the links 5 and 7 together. 

Coordinates of the robot mechanism: q~ 1, ~b2 
Masses of robot links: m5, m6, m7 (includes mass of the robot gripper and nominal payload of 
10 kg), m8 
Lengths of links: 15, 16, 17, 18, A Z  = a, D B  = b 
Lengths determining centres of gravity: CT8 = c, D T 7  = d, Z T 5  = p,  A T 6  = q 
Forces acting on point C in horizontal and vertical directions: Fx,  Fy 
Reaction forces: A x ,  Ay ,  Bx ,  By  
Stiffness of springs 1 and 2: kl,  k2 
Lengths of unloaded springs 1 and 2:101,102 
Lengths of spring rods: ll T, 12T 
Distances determining position of point V1: Ix 1, ly 1 
Distances determining position of point V2: lx2, ly2 
Distances between points Z T ,  Z W :  e 1, e2 
Permissible spring deflections: tm 1, tm2 
Angle determining position of point T: ~b 10 
Angle determining position of point W (when ~b 1 = ~b2): ~b20 

2.2. Equilibrium conditions 

It is clear that the forces Fx and Fy have to be minimized for all occurring positions of the robot. 
These forces are functions of the coordinates ~bl and ~2 and, of course, of the design variables 
of the robot. To compute the forces, we write down the following static equilibrium conditions. 
For static equilibrium of the links 6 and 8 together (see Fig. 5) in x and y directions we write: 

d x  + B x  + Fx  = O, (1) 

A y  + B y + F y -  G 6 -  G8 = 0 (2) 

and equilibrium condition of moments about point A 
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- By[16 cos(4) 1 - 4)2) - 18 cos 4)1] + Bx[18 sin 4)1 - 16 sin(4) 1 - 4)2)] + G6q cos(4)l - 4)2) 

+ G8[16 cos(4)l - 4)2) - c cos 4)1] - F x l 6  sin(4) 1 - 4)2) - F y l 6  cos(4)l - 4)2) = 0 (3) 

W e  can  also use the e q u i l i b r i u m  o f  m o m e n t s  o f  l ink  8 a b o u t  p o i n t  C 

B x l 8  sin 4)1 + B y l 8  cos 4)1 - G8c cos 4)1 = 0 (4) 

F o r  g r av i t a t i ona l  forces we have the re la t ions :  Gi = mi.g (i = 5-8),  where  g is the acce le ra t ion  due  
to gravi ty .  The  e q u i l i b r i u m  c o n d i t i o n  o f  the l ink  7, tha t  expresses e q u i l i b r i u m  o f  all m o m e n t s  a b o u t  
po in t  D,  c an  be wr i t t en  in the form:  

G 7 d  cos(4)l - 4)2) + Byb cos(4) 1 - 4)2) + Bxb sin(4) 1 - 4)2) - M 7 P  = 0 (5) 

where  M 7 P  is the sp r ing  b a l a n c i n g  m o m e n t  

M 7 P  = k2{102 - [ l Z T -  x / ( a l  2 + aZ2)]}eZ.sin(3n/2 - f12 - 4)20 - 4)1 + 4)2), (5a) 

wi th  

a n d  

a l  = e2 cos(3x/2  - 4)20 - 4)1 + 4)2) + ly2, 

a2  = e2 sin(3zt/2 - 4)20 - 4) 1 + 4)2) + lx2, 

(5b) 

(5c) 

f12 = arctg(a2/a 1) (5d) 

F ina l l y  we wri te  d o w n  the stat ic  e q u i l i b r i u m  o f  l inks  5 a n d  7 toge ther  ( equ i l i b r i um o f  all m o m e n t s  
a b o u t  p o i n t  Z ,  see Fig.  4) 

- G7[15 cos 4)1 - d cos(4) 1 - 4)2)] - Bx[15 sin 4)1 - b sin(4) 1 - 4)2)] 

- By[15 cos 4>1 - b cos(4) 1 - 4)2)] - M 7 P  - G5p cos 4)1 

- A x a  sin 4) 1 --  A y a  cos 4) 1 - M 5 P  = 0 (6) 

where  M 5 P  is the sp r ing  b a l a n c i n g  m o m e n t  

M 5 P  = - k { 1 0 1  - [ l i T -  x / ( b l  2 + b22)]}el.sin(fll + 7r/2 - 4)1 - 4)10), (6a) 

o i By 
B B x 

8 

Ax 
C 

Fig. 5. Determination of the forces Fx and Fy. 

x 
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bl = el cos(~b 1 + ~bl0) - Ixl ,  

b2 = - e l  sin(qb 1 + ~bl0) + / y l  

(6b) 

(6c) 

/~ 1 = arctg(b 1/b2). (6d) 

It is clear that Fx and Fy as well as A x ,  Ay,  Bx ,  By can be solved as functions of the coordinates 
~bl and 4)2 from the equations (1)-(6). In the next section this will be done with the aid of a 
Computer Algebra Software System. 

2.3. Solution o f  the forces f rom the equilibrium equations 

Equations (1)-(6) can be regarded as a set of  six linear equations in Fx,  Fy, Ax ,  Ay ,  Bx  and 
By. We are only interested in the values of  Fx and Fy. As we want to compute Fx and Fy for 
various values of ~bl and ~b2, and as we want to compute all those values for various values of 
the design variables of the robot we must be able to compute Fx and Fy in a very fast way. The 
fastest way is to solve equations (1)-(6) symbolically and we will do that with Maple [2]. 
First, we write 

It is clear that we have 

cv = cos(~bl - ~b2) sfl = sin ~bl 

sv = sin(~bl - ~b2) cfl  = cos ~bl. 

It is easy to derive that equations (1)-(6) can be 

sf2 = sin q~2 

with 

c f l . s v  - c v . s f l  = - s f 2  (7) 

written as: 

A x  

Ay 

Bx  

l~y 

Fx 

r y  

1 0 1 0 1 0 

0 1 0 1 0 1 

0 0 0 0 sv cv 

0 0 s f l  cfl  0 0 

0 0 sv cv 0 0 

sf l  cfl  0 0 0 0 

0 

A 

B 

C 

D 

E 

(8) 

A = G6 + G8 

B = (16.cv.G8 + q.cv.G6)/16 - ( M 7 P  - d.cv.G7)/b 

C = c.cf l .G8/18 

D = ( M 7 P  - d.cv.G7)/b 

E = ( -  15.cfl .G7 - M 5 P  - p . e f l .G5  - 15.c.cfl .G8/18)/a (9) 

Using Maple [2] we find the following solutions for Fx and Fy: 

Fx  = cf l .cv(G5.p/a + G6 + M 5 P / ( c f l . a )  + 15.G7/a - G6.q/16 - G8.c/18 - G7.d/b 

+ M7P/(cv .b )  + 15.G8.c/(a.18))/sf2 (10) 

and 

Fy --- c f l . s v ( -15 . c .G8 / (a .  18) + G8.c/18-15.G7/a - G5.p/a - M 5 P / ( a . c f l )  - G6)/sf2 

+ s f l . c v ( - M 7 P / ( b . c v )  + G7.d/b + G6.q/16)sff2 + G8 (11) 

These expressions for the forces Fx and Fy will be used in the computation of the objective function 
in Section 2.4. 
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2.4. Objective function 

When the variables of the robot and its balancing mechanisms given in Section 2.1. are known, 
the forces Fx and Fy can be computed from equations (10) and (11) for all possible values of the 
coordinates ~b I and q~2. In the ideal situation the forces would be zero. Let us define a coordinate 
system Z(x,  y), see Fig. 2. Then the coordinates q~ 1 and ~b2 can be computed from the coordinates 
x and y of point C using equations 

q~2 = 2 arcsin(x/(x 2 + y2)/2a (12) 

and 

~bl = g/2 + ~b2/2 - arcsiny/~/(x 2 + y2) (13) 

As mentioned in Section 2, the position of point M in the rectangle EFGH corresponds to the 
position of point C in the rectangle E'F'G'H' which is determined by intervals of coordinates x 
and y: 0.115 m ~< x ~ 0.295 m and -0 .025  m ~< y ~< 0.155 m. We are now able to compute Fx and 
Fy for any position of point C in the rectangular E'F'G'H'. 

An appropriate objective function can be defined in the form: 

= 
,/Fxi2 + Fyi 2 

N (14) 
i = 1  

where N is the number of points in the rectangle E'F'G'H' at which the forces Fx and Fy are 
computed. For  this purpose a rectangular grid will be used. It is obvious that the objective function 
defined by equation (14) represents an average resulting force acting on point C which is needed 
to balance the robot. This average force will be minimized. 

2.5. Design variables 

Not all variables in equations (10) and (11) are design variables of  the robot balancing system. 
The balancing moments M7P and M5P are determined by equations (5a) and (6a) and for ll T 
and 12T (computed variables) we have the following relations (see Figs 3 and 4) 

l i T =  x/( lxl  2 + / y l  2) + tml (15) 

12T= x/(e2 + ly2) 2 + lx22 + tm2 (16) 

which determine appropriate lengths of  the spring rods. In the example treated in Section 4 the 
following variables will be specified: 

m5, m6, m7, m8, 15, 16, 17, 18, a, b, c, d,p, q, tml, tm2. (17) 

For their values see Section 4.1. 
This means, for the following design variables a minimum of (14) has to be found: 

e l ,  101, k l ,  lxl, lyl, ~bl0, e2, •02, k2, lx2, l),2, ~b20 (18) 

For  these variables search intervals have to be given in order to find an optimal design, see Section 
4.2. 

Remark. The variables e 1 and e2 occur in the expressions for the forces Fx and Fy only in the 
combinations el .k l ,  e2.k2 or el/ length and e2/length. This means that we can give el and e2 
arbitrary values. If el  or e2 is a factor f la rger ,  then kl  and k2 will be a factor f smaller and this 
will give the same solution for the forces Fx and Fy. It means that we can specify the variables 
el and e2 and that in this case we have two independent design variables less and that will speed 
up the optimization program. 

3. METHOD OF SOLUTION 

The design of  the robot in Fig. 1 has now been formulated as an optimization problem, we want 
a minimum of  (14) and we want to know the values o f  the independent design variables (18). To 
find this minimum, we use existing optimization programs described in [6-8]. 
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Fig. 6. Initial position of  robot for case 1 as simulated by SPACAR. 

3. I. Optimization program GOOD 

It is clear that we have to find a global minimum for the function (14) for the variables (18). 
As we are not interested in a local extreme, all gradient methods are rejected. For a small number 
of  variables a Monte Carlo method [6] with interactive interval reduction is very appropriate. 

This method has been implemented by a Fortran program GOOD (Generator Of Optimal 
Designs). With this program that works in an interactive way the user is able to modify the search 
intervals for the independent variables manually during run time. With the aid of graphic functions 
it is shown on the screen where the subsequent suboptima are found, and the user can reduce the 
intervals accordingly. This way the convergence to an optimum can be speeded up. Recently the 
program has been extended to a genetic algorithm [8]. Using the same graphic interface, the user 
is able to start complete new populations in intervals where optima can be expected. It is found 
that "premature convergence" can be avoided this way. It appeared that for the number of 
independent variables (10) and for the time-consuming objective function we have here the genetic 
algorithm gave the fastest results. 

3.2. Genetic algorithm 

Genetic algorithms are extensively described in [9-11]. In order to apply a genetic algorithm, we 
have to "code"  the designs. We will here only mention how the necessary coding for the robot 
designs takes place in the program used. As shown in the preceding section, a design for the robot 
is determined by 10 independent variables (18). The function to be optimized is written as f =  - f ay  
(see 14), where f i s  called the fitness function, that has to be maximized. The independent variables 
are coded in binary strings. When we divide a search domain of a variable f.i.  in 1024 intervals, 
we can code a value in a certain interval as a binary number between 0000000000 and 1111111111. 
For  two different designs (selected with a preference for "better" designs) we can apply cross-over 
between the two bit strings for this variable. When we do this for all variables, we have created 
two "child designs". Mutation is applied with a certain mutation probability (can be modified 
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interactively during run time). In general, when we divide a search interval si into a power of  two 
intervals, and the number of  bits is nb, we can define a tolerance tol by: 

tol = si/2 "h (19) 

The tolerance tol can be specified by the user for all variables involved, nb is then computed from 
(19). A so-called start population (of f . / .  100 robots) is randomly generated, and from this start 
population new populations are created in the manner just described. In G O O D  the algorithm has 
been implemented in such a way that population size, mutation probability and search intervals 
can be modified during run time. The child designs tend to have better values of  the fitness function 
(14), as explained in [9-11]. This way many suboptima are generated with increasingly better values 
of  the fitness function (14). With the aid of  the graphic interface of  G O O D  it is possible to find 
out in what regions of  the search intervals the better designs are found, and to start a complete 
new population in those regions, see [8]. In the next sections results are given. 

PLBEAM 1 1 ii 2 12 
PLBEAM 2 2 12 3 13 
PLBEAM 3 3 14 5 15 
PLBEAM 4 5 15 6 16 
PLTRUSS 5 2 4 
PLTRUSS 6 4 5 
PLBEAM 7 1 17 7 18 
PLTRUSS 8 7 8 
PLBEAM 9 1 Ii 9 19 
PLTRUSS i0 9 i0 
PLBELT Ii 1 17 3 14 
PLTERN 12 4 21 20 
X 1 0 0 
X 2 -0.0645024 0.168046 
X 3 -0.393465 1.02508 
X 4 0.115498 0.168046 
X 5 -0.213465 1.02508 
X 6 0.704535 1.02508 
X 7 0.0982066 -0.0188539 
X 8 0.0176586 0.0874153 
X 9 -0.0161054 0.0986946 
X i0 0.0425081 0.204759 
X 20 0.115498 0.168046 
FIX 1 1 
FIX 1 2 
FIX 8 1 
FIX 8 2 
FIX i0 1 
FIX i0 2 
FIX 21 1 
RLSE 8 1 
LENGTH0 8 -0.0116236 
RLSE i0 1 
LENGTH0 i0 -0.0004555 
INPUTX 20 1 
INPUTX 20 2 
END 
ESTIFF 8 23158 
ESTIFF i0 64957.7 
XF 2 0 -4.0875 
XF 5 0 -25.2547 
XF 4 0 -31.0874 
XF 3 0 -1016.74 
XF 1 0 -304.539 
XF 6 0 -193.682 
END 

0.03 0.03 
0.0 

Fig. 7. Inputfile for SPACAR with definition of the robot mechanism, case I. 
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Fig. 8. Absolute value of driving forces, F = ~ + Fy,_, as function of position in input working area, 
case 1. 

4. R E S U L T S  

4. I. Speci f ied variables 

In  the  e x a m p l e  t r ea ted  the  f o l l o w i n g  va r i ab les  h a v e  been  specified: 

e l  = 0 . 1  m,  e2  = 0.1 m,  m5  = 57.0 kg, m 6 =  1.0 kg,  m7  = 97.43 kg,  m8  = 5.16 kg,  15 = 1.098 m, 

16 = 0.18 m,  17 = 1.098 m,  18 = 0.918 m,  t m l  = 0.15 m,  tm2  = 0.1 m , a  = 0.18 m, 

b = 0.18 m,  c = 0.458 m,  d = 0.2225 m , p  = 0.5 m,  q = 0.105 m. 

I t  is to  be u n d e r s t o o d  tha t  these  va r i ab le s  c o u l d  jus t  as  well  be  cons ide r ed  as des ign var iables .  In  

this case  we w o u l d  h a v e  to specify in te rva l s  fo r  t h e m  and  they  w o u l d  be t r ea ted  l ike the  var iab les  

in Sec t ion  4.2. 

4.2. Search intervals for design variables 

In Table 1 the search intervals for all independent design variables are given. 
This table has been used in the optimization program. A minimum for (14) is found in the given 
search intervals for the design variables. 

Table 1. Search intervals 

Variable Units Lower bound Upper bound 

k 1 N/m 0 4,000,000 
101 m 0.15 0.4 
hcl m -0.08 0.08 
ly 1 m 0.035 0.234 
~bl0 rad -0.3491 0.3491 
k2 N/m 0 600,000 
102 m 0.1 0.45 
lx2 m - 0.04 0.04 
ly 2 m 0.024 0.18 
~b20 rad 2.7925 3.4906 
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Variable Units Case 1 Case 2 Case 3 Case 4 

kl N/m 64957.72 77470.14 60332.34 58951.69 
/01 m 0.3595802 0.325919 0.3582281 0.3801751 
/xl m -0.04250812 0.01328951 0,07142384 0.03219239 
0'1 m 0.2047589 0.1753409 0,1961656 0.2276097 
~10 rad 0.2047383 -0.07568362 -0.3489188 -0.1374789 
k2 N/m 23157.98 6885.527 9764.061 
/02 m 0.299869 0.1778149 0.331819 -- 
/x2 m -0.01765858 0 . 0 0 1 9 4 1 3 0 6  0.004234375 - -  
0,2 m 0.08741526 0.02669327 0.09313436 
~20 rad 3.331267 3.143471 3.061444 
lIT m 0.3591247 0.3258438 0.3587638 0.379875 
/2T m 0.2882454 0.2267082 0.2931808 - -  
/a~ N 3.15 0.8545785 2.290451 46.09412 

4.3. Output of optimization programs 

The values found for the design and computed  variables of the robot  balancing system for a 
m i n i m u m  of the object funct ion (14) are given in Table 2. The specified variables are given in 
Section 4.1. Fou r  cases have been optimized. The results of  the first case characterize opt imal  
balancing mechanisms of the existing robot  A P R  20 with d = 0.2225 m. For  the second case we 
specified d = 0. It means that the centre of gravity T7 is at jo in t  D (see Fig. 2). For  the third case 
we specified the value of m7 = 87.43 kg (without the payload of 10 kg) and therefore we have 
d =  0.12236 m. We can conclude that the best result was gained for d =  0.12236 m. Compar ing  
average forces fay for the three cases we can conclude that the best result was gained for d = 0. 
Of  course, we could consider this specified variable as a design variable. The fourth case is 
characterized by the value of d = 0 however only the balancing mechanism for the link 5 was used. 
The result of  opt imizat ion (fay = 46.09412 N) is much worse than in the previous three cases. It 
is caused by the fact that this ba lancing mechanism is not  able to balance link 5 and also links 
6 and 8 well. 

fav = 4 6 . 1 4 9 9  [N] 

iiiiiiiiiiiiii i iiiiiiiii 
8 0 -  " ' "  . -  " ' ' ' ' "  - . 

o 

6 0 - - ' '  

z 4 0 . . .  - - 
U.. 

20- -  - ' "  

O= 
0 .2  

0 .3  

y [m] -0.1 0.1 x[m] 

Fig. 9. Absolute value of driving forces, F = ~ Fy' as function of position in input working area, 
case 4. 
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5. ANALYSIS OF RE S UL T S  

To check the results of  the optimization programs, the resulting robots are given as input to a 
general purpose multibody system dynamics computer program SPACAR [3]. This program needs 
as input the topology, geometry, mass and force distribution of an arbitrary multibody system, 
in this case a robot. The output of  the program is the movement,  position, velocity and acceleration, 
together with all forces for the given input movement.  In the case of  the robot a kinetostatic analysis 
was done, that is the inertia forces due to the movement  were excluded. Since a number of  cases 
with the same topology but with different geometry had to be analysed MATLAB [4] was used 
as a pre- and postprocessor. In fact, the SPACAR program, which is just a collection of  
F O R T R A N  subroutines, has been constructed as a subroutine to the MATLAB program with the 
aid of  the MATLAB MEX utility. This way it was also possible to have a graphic animation of 
the geometry during the analysis. In Fig. 6 the initial position of the robot for case 1 is shown. 
For  every case from Table 2 the variables are read into MATLAB. With a MATLAB script these 
variables are translated into a SPACAR specific input file. For  case 1 this input file is shown in 
Fig. 7. Together with a description of the results to be stored after each integration step the 
SPACAR program is run from the MATLAB environment. The results, driving positions and 
forces, are plotted in MATLAB  in a 3D graphics form. These figures give a good impression of 
the driving forces in the working area of  the robot. Finally the average force is calculated and 
compared to the output f a y  (case 1 and case 4) from G O O D  (Table 2). 

Since the discretisation of  the working area differs from GOOD,  the f a y  resulting from SPACAR 
is not exactly the same, but an agreement of  95% is obtained. The results computed with SPACAR 
are shown in Figs 8 and 9. 

6. CONCLUSION 

It was shown that the problem of  finding suitable design variables for balancing mechanisms 
of a robot can be formulated as an optimization problem that can easily be solved with the aid 
of  a Monte Carlo with interactive interval reduction as described in [6] and [7]. A genetic algorithm 
gives even better and faster results. It is obvious that the method can be also used to optimize 
structures of  robot mechanisms. It is probable that in the case of  the so called "ASEA" robot 
mechanism, see for example [12], we would not need to use a mechanical transmission (which 
complicates the design of the robot) to balance the link 7 of  Fig. 2. The advantage of the method 
described in this article compared to other methods, see for example [5] and [12], consists in the 
fact that this method is general and appropriate to solve problems in practice. It is to be expected 
that many other design problems of robots can be solved in the same manner. 

Acknowledgement--The authors are indebted to P. J. Dekker for computing the expressions for Fx and Fy with the aid 
of Maple. 
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