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Abstract
In this paper we present the linearized equations of
motion for a bicycle as a benchmark. The results ob-
tained by pencil-and-paper and two programs are com-
pared. The bicycle model we consider here consists of
four rigid bodies, viz. a rear frame, a front frame being
the front fork and handlebar assembly, a rear wheel and
a front wheel, which are connected by revolute joints.
The contact between the knife-edge wheels and the flat
level surface is modelled by holonomic constraints in
the normal direction and by non-holonomic constraints
in the longitudinal and lateral directions. The rider is
rigidly attached to the rear frame with hands free from
the handlebar. This system has three degrees of free-
dom: the roll, the steer, and the forward speed. For
the benchmark we consider the linearized equations for
small perturbations of the upright steady forward mo-
tion. The entries of the matrices of these equations
form the basis for comparison. Three different kinds
of methods to obtain the results are compared: pencil-
and-paper, the numeric multibody dynamics program
SPACAR, and the symbolic software system AutoSim.
Because the results of the three methods agree within
the machine round-off error, we assume that the re-
sults are correct and can be used as a bicycle dynamics
benchmark.

Key words
Bicycle Dynamics, Benchmark, Linearization, Stabil-
ity, Nonholonomic Systems.

1 Introduction
A variety of vehicles can be statically unstable yet
dynamically stable, for example a skateboard with a
rigidly attached rider, a tricycle with raked steering
axis, or a bicycle/motorcycle. Of these the bicycle is
the most interesting, yet the hardest to analyse cor-
rectly. As a result the literature contains a great many

flawed equations, and widespread qualitative explana-
tions of uncontrolled self-stability which are inconsis-
tent with careful analyses.
It is the purpose of this paper to present a high-
precision benchmark for the linearized equations of
motion for a clearly defined bicycle travelling at a range
of speeds. Alternative formulations, or even non-linear
simulation of a small perturbation, can therefore be
checked with confidence. A second aim is to present
exhaustively confirmed linearized equations of motion
suitable for research and application.
The study of bicycle and motorcycle dynamics has
attracted attention from mechanical engineers such
as [Rankine, 1869; Klein and Sommerfeld, 1910; Tim-
oshenko and Young, 1948; Den Hartog, 1948; Neı̆mark
and Fufaev, 1972; Kane, 1975] and many others, also
outside the engineering discipline. Investigations have
ranged from purely ad hoc analyses to full non-linear
computer simulations.
The first publication of the full non-linear and also the
linearized equations of motion for an upright uncon-
trolled bicycle was by [Whipple, 1899]. His lineariza-
tion was found to be correct except for some typograph-
ical errors. Subsequently equations were derived by
scores of people, some of these agree, others do not.
The Master thesis by [Hand, 1988] gives a detailed re-
view.
The organization of the paper is as follows. After this
introduction the bicycle model is described. In Sec-
tion 3 the linearized equations of motion are presented
in an algorithmic manner. In Section 4 the results for
the benchmark bicycle are presented and discussed. In
Sections 5 and 6 the derivation of the equations of mo-
tion by means of the multibody dynamics software pro-
grams SPACAR and AutoSim are discussed and the re-
sults are compared. Next, in Section 7, some bicycle
dynamics folklore is disproved by means of an exam-
ple. The paper ends with some conclusions. An ap-
pendix reviews the literature on bicycle dynamics up
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Figure 1. Bicycle model together with the coordinate system, the

degrees of freedom, and the parameters.

until 1988 and shows the listings of the bicycle model
input for the multibody dynamics software programs.

2 Bicycle Model
The mechanical model of the bicycle consists of four

rigid bodies, viz. the rear frame with the rider rigidly
attached to it, the front frame being the front fork and
handle bar assembly and the two knife-edge wheels.
These bodies are interconnected by revolute hinges at
the steering head between the rear frame and the front
frame and at the two wheel hubs. In the reference
configuration, all bodies are symmetric relative to the
bicycle midplane. The contact between the stiff non-
slipping wheels and the flat level surface is modelled
by holonomic constraints in the normal direction and
by non-holonomic constraints in the longitudinal and
lateral direction. There is no friction, apart from the
idealized friction between the non-slipping wheels and
the surface, nor propulsion and no rider control, the so-
called hands free coasting operation. These assump-
tions make the model energy-conserving. In the refer-
ence position, the global Cartesian coordinate system
is located at the rear-wheel contact pointO, where the
x-axis points in the longitudinal direction of the bicycle
and the z-axis is directed downwards. Figure1 shows
the directions of the axes, where the terminology used
mainly follows the SAE recommended practice as de-
scribed in the report SAE-J607e[SAE, 2001], last re-
vised in 1976.
The mechanical model of the bicycle has three degrees

of freedom: the roll angleφ of the rear frame, the steer-
ing angleδ, and the rotationθr of the rear wheel with
respect to the rear frame. The angles are defined as
follows. The orientation of the rear frame with respect
to the global reference frameO–xyz is given by a se-
quence of three angular rotations: a yaw rotation,ψ,
about thez–axis, a roll rotation,φ, about the rotatedx–
axis, and a pitch rotation,θ, about the rotatedy–axis.
These rotations are materialized and depicted in Fig-

Parameter Symbol Value

Wheel base w 1.02 m
Trail t 0.08 m
Head angle α arctan(3)
Gravity g 9.81 N/kg
Forward speed v variablem/s

Rear wheel
Radius Rrw 0.3 m
Mass mrw 2 kg
Mass moments of inertia(Axx, Ayy, Azz) (0.06, 0.12, 0.06) kgm2

Rear frame
Position centre of mass (xrf , yrf , zrf ) (0.3, 0,−0.9) m
Mass mrf 85 kg

Mass moments of inertia




Bxx 0 Bxz

Byy 0
sym. Bzz







9.2 0 2.4
11 0

2.8


 kgm2

Front frame
Position centre of mass (xff , yff , zff ) (0.9, 0,−0.7) m
Mass mff 4 kg

Mass moments of inertia




Cxx 0 Cxz

Cyy 0
sym. Czz







0.0546 0 −0.0162
0.06 0

0.0114


kgm2

Front wheel
Radius Rfw 0.35 m
Mass mfw 3 kg
Mass moments of inertia(Dxx, Dyy, Dzz) (0.14, 0.28, 0.14) kgm2

Table1. Parameters for the benchmark bicycle from Figure 1.

ure5 by three hinges in series,1©, 2©, and 3©, mounted
at the rear hub. The steering angleδ is the rotation of
the front frame with respect to the rear frame about the
steering axis. Due to the non-holonomic constraints
there are four extra kinematic coordinates which de-
scribe, together with the degrees of freedom, the con-
figuration of the system[Schwab and Meijaard, 2003].
The four kinematic coordinates are taken here as the
Cartesian coordinatesx andy of the rear-wheel con-
tact point, the yaw angleψ of the rear frame, and the
rotationθf of the front wheel with respect to the front
frame.
The dimensions and mechanical properties of the

benchmark model are presented in Table1. The sys-
tem is symmetric about the vertical longitudinal plane
and the wheels are rotationally symmetric about their
axles. The mass moments of inertia are given at the
centre of mass of the individual bodies and along the
globalxyz-axes.

3 Linearized Equations of Motion
This section gives an algorithmic presentation of the

linearized equations of motion for the bicycle model
under study as derived by[Papadopoulos, 1987]. The
equations of motion are obtained by pencil-and-paper
using D’Alembert’s principle and linear and angular
momentum balances. They are expressed in terms of
small changes in the degrees of freedomφ, the rear
frame roll angle, andδ, the steering angle, from the
upright straight ahead configurationφ0 = 0, δ0 = 0, at
a forward speed ofv = −θ̇rRrw.
Let us consider the bicycle from Figure1 and Table1.

The subscripts used are:rw for the rear wheel,rf for
the rear frame,ff for the front frame,fw for the front
wheel,t for the total system,f for the front assembly
which is the front frame plus the front wheel,x, y, and
z are the directions along the globalxyz-axes, andλ

512



is the direction of the steering axis pointing downward.
Then the algorithm is as follows. For the system as a
whole, calculate the total mass and the corresponding
centre of mass with respect to the originO as

mt = mrw + mrf + mff + mfw, (1)

xt = (xrfmrf + xffmff + wmfw)/mt, (2)

zt = (−Rrwmrw + zrfmrf + zffmff − (3)

Rfwmfw)/mt.

For the system as a whole, calculate the relevant mass
moments and products of inertia at the originO along
the global axes as

Txx = Axx + Bxx + Cxx + Dxx + mrwR2
rw + (4)

mrfz2
rf + mffz2

ff + mfwR2
fw,

Txz = Bxz + Cxz −mrfxrfzrf −mffxffzff + (5)

mfwwRfw,

Tzz = Azz + Bzz + Czz + Dzz + mrfx2
rf + (6)

mffx2
ff + mfww2.

Now determine the same properties for the front assem-
bly, being the front frame and the front wheel, as

mf = mff + mfw, (7)

xf = (xffmff + wmfw)/mf , (8)

zf = (zffmff −Rfwmfw)/mf , (9)

and calculate the relevant mass moments and products
of inertia for the front assembly at the centre of mass
of the front assembly along the global axes as

Fxx = Cxx + Dxx + mff (zff − zf )2 + (10)

mfw(Rfw + zf )2,
Fxz = Cxz −mff (xff − xf )(zff − zf ) + (11)

mfw(w − xf )(Rfw + zf ),
Fzz = Czz + Dzz + mff (xff − xf )2 + (12)

mfw(w − xf )2.

Let λ be the angle of the steering axisλ =
(sin(λ), 0, cos(λ))T with the globalz-axis in the ver-
tical plane,

λ = π/2− α. (13)

Calculate the perpendicular distance that the centre of
mass of the front assembly is ahead of the steering axis,

u = (xf − w − t) cos(λ)− zf sin(λ). (14)

Calculate for the front assembly the relevant mass mo-
ments and products of inertia along the steering axis
and the global axes at points where they intersect as

Fλλ = mfu2 + Fxx sin(λ)2 + (15)

2Fxz sin(λ) cos(λ) + Fzz cos(λ)2,
Fλx = −mfuzf + Fxx sin(λ) + Fxz cos(λ), (16)

Fλz = mfuxf + Fxz sin(λ) + Fzz cos(λ). (17)

Define the ratio of the mechanical trail (i.e. the perpen-
dicular distance that the front wheel contact point is
behind the steering axis) to the wheelbase as

f = t cos(λ)/w. (18)

Calculate for the rear and the front wheel the angu-
lar momentum along they-axis divided by the forward
speed, together with their sum as

Sr = Ayy/Rrw, (19)

Sf = Dyy/Rfw, (20)

St = Sr + Sf . (21)

Define a frequently appearing static moment term as

Su = mfu + fmtxt. (22)

Now the linearized equations of motion for the bicycle
expressed in the degrees of freedomqd = (φ, δ)T have
the form

Mq̈d + [C1 · v]q̇d + [K0 + K2 · v 2]qd = f d, (23)

with a constant mass matrix,M, a “damping” matrix
C1 · v which is linear in the forward speed, and a stiff-
ness matrix which is the sum of a constant part,K0,
and a part,K2 · v 2, which is quadratic in the forward
speed. The linearized equation of motion for the third
degree of freedom, the rotationθr of the rear wheel,
is decoupled from the first two(23) and takes on the
very simple form of:  θ̈r = 0.     This means that
the forward speed remains constant for small changes
in the upright configuration. The forces on the right-
hand side,f d, are the applied forces which are ener-
getically dual to the degrees of freedomqd. For the
bicycle model the first isMφ, the action-reaction roll
moment between the fixed space and the rear frame. In
practice such a torque could be applied by side wind,
or by a parent teaching a child to ride. The second is
Mδ, the action-reaction steering moment between the
rear frame and the front frame. This is the torque that
would be applied by a rider’s hands, a steering spring-
damper, or a controller. In the case of an ordinary un-
controlled bicycle, both of these moments are taken to
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be zero. The elements of the mass matrix are

M(1, 1) = Txx,

M(1, 2) = Fλx + fTxz,

M(2, 1) = M(1, 2), (24)

M(2, 2) = Fλλ + 2fFλz + f2Tzz.

The velocity-independent elements of the stiffness ma-
trix are

K0(1, 1) = gmtzt,

K0(1, 2) = −gSu,

K0(2, 1) = K0(1, 2), (25)

K0(2, 2) = −gSu sin(λ),

and the elements of the stiffness matrix to be multiplied
by the square of the forward speed are

K2(1, 1) = 0,

K2(1, 2) = (St −mtzt) cos(λ)/w,

K2(2, 1) = 0, (26)

K2(2, 2) = (Su + Sf sin(λ)) cos(λ)/w.

Finally, the “damping” matrix which is to be multiplied
by the forward speed is given by

C1(1, 1) = 0,

C1(1, 2) = fSt + Sf cos(λ) + Txz cos(λ)/w − fmtzt,

C1(2, 1) = −(fSt + Sf cos(λ)), (27)

C1(2, 2) = Fλz cos(λ)/w + f(Su + Tzz cos(λ)/w).

4 Results
Substitution of the parameter values from Table1 re-

sults in the following values for the entries in the mass
matrix from(24),

M =
[

80.812 100 000 000 02, 2.323 431 426 235 49
2.323 431 426 235 49, 0.301 265 709 342 56

]
,

(28)
the constant stiffness matrix from(25),

K0 =
[−794.119 500 000 000, −25.739 089 291 258
−25.739 089 291 258, −8.139 414 705 882

]
,

(29)
the stiffness matrix from(26) which is proportional to
the square of the forward speed

K2 =
[

0, 76.406 208 759 656 57
0, 2.675 605 536 332 18

]
, (30)
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Figure 2. Eigenvaluesλ from the linearized stability analysis for

the benchmark bicycle from Figure 1 and Table 1 where the solid

lines correspond to the real part of the eigenvalues and the dashed line

corresponds to the imaginary part of the eigenvalues, in the forward

speed range of0 ≤ v ≤ 10 m/s. The zero crossings of the real part

of the eigenvalues are for the weave motion at the weave speedvw =

4.302 m/s and for the capsize motion at capsize speedvc = 6.057

m/s, and there is a double real root atvd = 0.694 m/s, for more

accurate values see Table 2. The asymptotically stable speed range

for the bicycle isvw < v < vc.

and finally the the “damping” matrix from(27) which
depends linearly on the forward speed

C1 =
[

0, 33.773 869 475 930 10
−0.848 234 478 256 93, 1.706 965 397 923 87

]
.

(31)

4.1 Linearized Stability, Eigenvalues
The stability of the bicycle in the upright steady mo-

tion at constant forward speed can be investigated
by the homogeneous linearized equations of motion
from (23). We start with the usual assumption of an
exponential motion with respect to time for the small
variations in the degrees of freedomqd = (φ, δ)T

which then takes the formqd = qd
0 exp(λt). Substitu-

tion into the linearized equations of motion leads to an
eigenvalue problem. For the bicycle model under study
the characteristic equation of this eigenvalue problem
is a polynomial in the eigenvaluesλ of order four. The
coefficients in this polynomial are themselves polyno-
mials in the forward speedv, since some coefficients
of the linearized equations of motion have a linear or
quadratic dependency onv. The solutions of the char-
acteristic polynomial for a range of forward speeds are
the root loci of the eigenvaluesλ, which are shown in
Figure2. Eigenvalues with a positive real part corre-
spond to unstable motions whereas eigenvalues with a
negative real part result in asymptotically stable mo-
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v [m/s] λ [1/s]
v = 0 λs1 = ±3.131 435 844 365 21
v = 0 λs2 = ±5.587 754 114 792 34

vd = 0.693 712 762 387 39 λd = 3.795 471 790 345 88
vw = 4.301 611 037 733 12 λw = 0± 3.353 979 714 187 50 i
vc = 6.057 011 283 544 49 0

Table 2. Some characteristic values for the forward speedv and the

eigenvaluesλ from the linearized stability analysis for the benchmark

bicycle from Figure 1 and Table 1 in the forward speed range of0 ≤
v ≤ 10 m/s. With two static eigenvalues at zero speed, a double root

at the speedvd, the weave speedvw, and the capsize speedvc.

tions. Complex conjugated eigenvalues give rise to os-
cillatory motions. For the bicycle model there are two
significant eigenmodes, called capsize mode and weave
mode. The capsize motion is a non-oscillatory motion
in which, when unstable, the bicycle just falls over like
a capsizing ship. The weave motion is an oscillatory
motion in which the bicycle sways about the headed
direction. At very low speed,0 < v < 0.5 m/s, there
are two positive and two negative eigenvalues which
correspond to an inverted pendulum-like motion of the
bicycle. Then atvd = 0.694 m/s two real eigenvalues
become identical and start forming a conjugated pair;
this is where the oscillatory weave motion emerges. At
first this motion is unstable but atvw = 4.302 m/s
these eigenvalues cross the real axis in a Hopf bifurca-
tion and the weave motion becomes stable until infin-
ity. After this bifurcation the frequency of the weave
motion is almost proportional to the forward speed.
Meanwhile the capsize motion, which was stable for
low speed, crosses the real axis in a pitchfork bifurca-
tion atvc = 6.057 m/s and the motion becomes mildly
unstable. We call a motion mildly unstable when the
eigenvalues have a absolute value which is smaller than
2 s−1, in which case it is fairly easy to stabilize the mo-
tion manually. With further increase in speed, the cap-
size eigenvalue approaches zero. Some characteristic
values for the forward speedv and the eigenvaluesλ as
introduced above are presented with fifteen significant
digits in Table2.
We conclude that the speed range for which the bicy-

cle shows asymptotically stable behaviour isvw < v <
vc, although from a practical point of view one could
say that the bicycle is easy to balance for all speeds
above 2 m/s.

4.2 Eigenvalues for Comparison
In order to test the equations of motion against any

other set of equations, usually with a different choice of
state variables, we present the eigenvalues with fifteen
significant digits in a tabulated form. Eigenvalues are
objective and coordinate free. Table3 presents the real
and imaginary part of the weave speed for the forward
speed range of0 ≤ v ≤ 10 m/s, note that there is no
weave motion at low speed. The eigenvalues for the
capsize mode and stable steering mode, a mode with
a steering angle much larger than the lean angle, are

v Re(λweave) Im(λweave)
[m/s] [1/s] [1/s]

0 – –
1 3.544 205 145 548 87 0.803 758 373 000 36
2 2.693 674 773 305 74 1.678 828 917 907 97
3 1.720 957 788 279 10 2.296 625 407 427 06
4 0.436 362 119 499 78 3.008 741 465 795 03
5 −0.796 974 698 035 21 4.346 861 189 884 42
6 −1.574 537 004 541 48 5.738 444 449 263 20
7 −2.205 683 819 126 67 7.034 232 043 107 23
8 −2.777 227 223 861 88 8.275 247 335 273 91
9 −3.316 436 963 837 01 9.483 978 499 142 20

10 −3.835 293 220 572 69 10.672 131 916 701 23

Table 3. Eigenvaluesλ from the linearized stability analysis for

the oscillatory weave motion for the benchmark bicycle from Figure

1 and Table 1 in the forward speed range of0 ≤ v ≤ 10 m/s.

v λcapsize λss

[m/s] [1/s] [1/s]
0 −3.131 435 844 365 21 −5.587 754 114 792 34
1 −3.132 456 200 083 79 −7.198 742 879 169 33
2 −3.079 168 373 984 22 −8.793 758 748 938 05
3 −2.672 380 269 446 02 −10.497 901 671 578 35
4 −1.515 016 792 101 13 −12.328 862 599 519 56
5 −0.349 966 855 680 58 −14.270 027 689 026 00
6 −0.009 940 447 809 29 −16.297 718 272 040 15
7 0.102 808 114 149 01 −18.390 961 992 983 64
8 0.145 690 334 393 54 −20.533 546 191 913 53
9 0.161 289 013 155 47 −22.713 514 178 876 04

10 0.164 852 473 666 66 −24.922 153 914 075 30

Table 4. Eigenvaluesλ from the linearized stability analysis for the

capsize motion and the stable steering (ss) motion for the benchmark

bicycle from Figure 1 and Table 1 in the forward speed range of0 ≤
v ≤ 10 m/s.

presented in Table4.

5 Equations of Motion Derived with the Numeric
Program SPACAR

SPACAR is a program system written in Fortran-77
for dynamic analysis of multibody systems, based on a
finite element technique. Starting from the principles as
laid out by [Besseling, 1964], this software was initi-
ated in the seventies by[Van Der Werff, 1977], and has
been further developed among others by[Jonker, 1988;
Jonker and Meijaard, 1990; Meijaard, 1991; Schwab,
2002]. The SPACAR program can handle mechanical
systems of rigid and flexible bodies that are intercon-
nected by complex joints in both open and closed kine-
matic loops and may have rolling contacts. The dy-
namical equations are given for a set of minimal coor-
dinates rather than with the aid of Lagrangian multipli-
ers. Besides doing forward dynamic analysis, the sys-
tem is also capable of deriving the numeric coefficients
for the linearized equations of motion in any given con-
figuration and state of motion of the system. With the
help of a rather limited number of finite element types
it is possible to model a wide class of systems. Typ-
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ical types of elements are beam, truss and hinge ele-
ments, while more specialized elements can be used to
model complex joint connections, transmissions of mo-
tion [Schwab and Meijaard, 1999a], and rolling contact
as in road vehicles and track-guided vehicles[Schwab
and Meijaard, 1999b; Schwab and Meijaard, 2003].
The SPACAR model for the benchmark bicycle is

sketched in Figure5, whereas the input file for the
SPACAR program describing this model is presented
in AppendixB. The model consists of two knife-edge
rigid wheel elements, two rigid bodies for the front and
the rear frame, and six hinge elements for describing
relative rotations. The elements describing the three
degrees of freedom are the relative rotations in: hinge
2© for the roll angleφ, hinge 9© for the steering angleδ,
and hinge4© for the rotationθr of the rear wheel with
respect to the rear frame. The four kinematic coordi-
nates can be found in the model as thex andy compo-
nents of node~9 which is the rear-wheel contact point,
the relative rotation in hinge1© for the yaw angleψ,
and the relative rotation in hingek12 for the rotationθf

of the front wheel with respect to the front frame.
The entries in the matrices of the linearized equations

of motion (23) as determined by the numeric program
SPACAR agree with the values presented in Section4,
where at most the fifteenth digit may differ a unit.

5.1 Non-linear Dynamic Response
When an uncontrolled bicycle is in its stable speed

range, roll and steer perturbations die away in a seem-
ingly damped fashion. However, the system con-
serves energy and the perturbation energy has been
transformed into energy of forward travel. As the
forward speed is affected only to second order, lin-
earized equations do not capture this. Therefore a non-
linear dynamic analysis with SPACAR is performed on
the benchmark bicycle model to demonstrate this phe-
nomenon. The initial conditions att = 0 are (an up-
right position)(φ, δ, θr) = (0, 0, 0) at a forward speed
of v = 4.5 m/s, which is within the stable speed range
of the linearized analysis, and a small perturbation of
the angular roll velocity ofφ̇ = 0.5 rad/s. Then, in
Figure3, the dynamic response clearly shows a small
increase of the forward velocityv while the perturbed
lateral motions die out. The same figure shows that
the period for the roll and the steer motion is approx-
imately T0 = 1.73 s, which compares well with the
1.734 s from the linearized stability analysis. Note also
the small phase lag of the steering motionδ̇ relative to
the roll motionφ̇.

6 Linearized Equations of Motion Derived with
the Symbolic Program Autosim

With the multibody dynamics program AutoSim[Say-
ers, 1991a; Sayers, 1991b], the equations of motion for
a mechanical system can be derived in a symbolic form.
The program is mainly designed for analysing systems
of rigid bodies that are interconnected by prismatic

0 1 2 3 4 5
-0.5

    0

 0.5

 

   

4.50

4.55

4.60
φ
.

δ
.

[rad/s] v [m/s]

t [sec]

Figure 3. Non-linear dynamic response of the benchmark bicy-

cle from Figure 1 and Table 1, with the angular roll velocityφ̇, the

angular steering velocitẏδ, and the forward speedv = −θ̇rRrw

for the initial conditions:(φ, δ, θr)0 = (0, 0, 0) and(φ̇, δ̇, v)0 =

(0.5 rad/s, 0, 4.5 m/s) for a time period of 5 seconds.

and revolute joints and are arranged in a tree topology.
Additional constraints can be imposed on the system
for taking into account kinematic closed loops, special
joints or non-holonomic constraints. Additional holo-
nomic constraints, however, cannot be solved in gen-
eral in a symbolic form for the dependent coordinates:
an iterative numerical solution for these coordinates is
needed, which destroys the purely symbolic nature of
the equations. Non-holonomic constraints are gener-
ally linear in the velocities and can be solved for the
dependent velocities.
The methods used for deriving the equations of mo-

tion are mainly based on Kane’s approach[Kane,
1968], with some minor modifications. The program
is written in Lisp [Steele, 1990] and consists of a set
of definitions of functions, macros and data structures.
The definitions give procedures for handling algebraic
expressions, for modelling of components of multibody
systems such as bodies, points, joints and forces, for
formulating the equations of motion and for generating
output. The input file for an analysis is a Lisp program
and the full language is available to the user. The mod-
eller has a fairly good control over the formulation of
the equations of motion, while user-defined forces are
easy to add.
The equations of motion are obtained in the form

q̇ = S(q, t)u,
u̇ = [M(q, t)]−1Q(q,u, t). (32)

Here,q are the generalized coordinates,u are the gen-
eralized velocities,S is the kinematic matrix that re-
lates the rates of the generalized coordinates to the
generalized speeds,M is the system matrix, andQ
contains all force terms and velocity dependent inertia
terms.
A standard option for linearization is available, which,

however, is not applicable for systems with closed kine-
matic loops (e.g. the front-wheel ground contact of a
bicycle). Fortunately, for the highly symmetric bicy-
cle model, the dependent coordinate, the pitch angle,
remains zero to first order, for which special case the

516



linearization option gives the right results. The output
consists of a MatLab script file that calculates the ma-
trices of the linearized equations.
The input file used for the bicycle model is listed

in AppendixC. The generalized coordinates and ve-
locities are the same as those in the SPACAR model.
Two massless intermediate reference frames have been
introduced: the yawing frame describes the in-plane
translation and yawing of the rear frame, and the rolling
frame describes the rolling of the rear frame with re-
spect to the yawing frame. These additional frames au-
tomatically satisfy the holonomic constraint at the rear
wheel, and also give a better control over the choice
of the generalized coordinates. The holonomic con-
straint at the front wheel and the four non-holonomic
constraints are explicitly defined in the input file.
The entries in the matrices of the linearized equations

of motion(23) as determined by the program AutoSim
agree with the values presented in Section4, where at
most the fifteenth digit may differ a unit.

7 Bicycle Dynamics Folklore
The world of bicycle dynamics is filled with folklore.

For instance, some publications persist in the neces-
sity of positive trail or gyroscopic effect of the wheels
for the existence of a forward speed range with uncon-
trolled stable operation. Here we will show, by means
of a counter example, that this is not necessarily the
case.
Consider the bicycle model from Section2 but with

the following dimensions and mechanical properties.
The wheel base is 1.2 m at zero trail, and the head an-
gle is 85 degrees. Both wheels are massless and have
a diameter of 0.35 m. The mass distribution of the rear
frame is modelled by two point masses, one of 40 kg
upfront at(x, z) = (1.5,−0.6) m and one of 40 kg at
the rear contact point. The latter has to insure contact
at the rear wheel, but gives no contribution to the lin-
earized equations of motion. The front fork has a mass
of 1 kg located at front hub,(x, z) = (1.2, 0.35) m and
zero mass moment of inertia. Gravity is 9.81 N/kg.
The eigenvalue analysis on the linearized equations of

motion results in a weave speed ofvw = 2.815 m/s for
this model and no capsize speed, see Figure4. Inspec-
tion of the eigenvalues for a wide forward speed range
shows that the capsize motion is always stable and that
all eigenvalues above the weave speed have a negative
real part. In other words, this bicycle with zero trail
and zero gyroscopic effect shows asymptotically stable
uncontrolled motion for the broad forward speed range
of 2.815 ≤ v ≤ ∞ m/s.

8 Conclusions
If we compare the results obtained by the three meth-

ods, it appears that the coefficients for the linearized
equations agree with each other and the difference are
only caused by the finite precision of the numeric cal-
culations: the relative errors are less than 1 part in1014.
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Figure 4. Eigenvaluesλ from the linearized stability analysis for

a bicycle with zero trail and no gyroscopic effects from Section 7.

The solid lines correspond to the real part of the eigenvalues and the

dashed line corresponds to the imaginary part of the eigenvalues, in

the forward speed range of0 ≤ v ≤ 10 m/s. The zero crossing of the

real part of the eigenvalues is for the weave motion at the weave speed

vw = 4.302 m/s and there are three double real roots atv = 0.022,

6.014, and8.089 m/s. The asymptotically stable speed range for this

bicycle isvw < v < ∞.

This gives us confidence that the presented results are
correct and the problem can be used as a benchmark
test for multibody dynamics simulations.
Starting from the given basic model for the bicycle,

more elaborate models can be developed. These may
include the finite width of the tires, control torque at
the handle bar, relative motion between the rider and
the rear frame and tire models that include wheel slips
and compliance.
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A Literature review
This review is a condensed account of the review pre-

sented in the MSc thesis by[Hand, 1988]. Some prior
publications where missed. In general the literature had
the major defects that few or no authors compared their
result with those of others. Of course comparison is
difficult because of different choice of variables and
combination of equations, different parametrization of
the bicycle and lack of model equivalence. Moreover,
there are two additional problems. One is that people
are making messy complicated equations which were
never reduced and use bad notation. The other is that
some models are special cases like vertical steering axis
or only point masses, zero mass moments of inertia.
Of the twenty sets of equations discussed in this

overview only three are fully general and perfectly
correct[Döhring, 1955; Singh and Goel, 1971; Weir,
1972]. Five others were little less general as for exam-
ple principal axis aligned with the steering axis, or had
minor and easily corrected errors[Whipple, 1899; Car-
vallo, 1901; Klein and Sommerfeld, 1910; Timoshenko
and Young, 1948; Sharp, 1971]. Three[Collins, 1963;
Singh, 1964; Roland, 1973] were too difficult to eval-
uate and we have reservations about the first two. The
remaining eight had missing terms or disagreed in other
ways. Only one author[Weir, 1972] explicitly stated
that he compared equations.

[Whipple, 1899] He is the first and fully nonlinear

(which we did not validate). His linearized equa-
tions agrees very well except for minor typograph-
ical errors.

[Carvallo, 1901])Not general, massless fork and handle
bar, equations are right.

[Klein and Sommerfeld, 1910]Not general, massless
fork and handle bar, equations are right.

[Bower, 1915] Not general, point masses in special
places and vertical steering axis, equations are in-
correct.

[Pearsall, 1922]Special case, inertia along vertical axis,
and equations are incorrect.

[Loı̆cjanskĭı and Lúre, 1934] No review, used by
Neimark and Fufaev.

[Timoshenko and Young, 1948]Very simplified, using
point masses and a controlled steering angle, only
the lean equations, vertical steering axis, and when
we linearize this equation it is correct.

[Döhring, 1955]He took away the restrictions on the
model by Sommerfeld and Klein, and it’s all cor-
rect.

[Collins, 1963] General model with driving and drag
forces, his equations imply a correct lean equation
but we were unable to determine whether they also
imply the correct steering equation.

[Singh, 1964]Rederived Collins equations, added a
suspect tire model, and it disagreed with respect
to Collins, incorrect.

[Nĕımark and Fufaev, 1972]General model, ignores
the pitch of the rear frame, incorrect.

[Singh and Goel, 1971]Use D̈ohring’s equations and
add steering damping, seemingly correct.

[Sharp, 1971]General model but with parallel inertia to
the steering axis and tire models. The linear anal-
ysis is probably correct, in elimination of the tire
model he introduces an algebra error, otherwise it
is correct.

[Roland and Massing, 1971]General model with tire
model, nonlinear. Unable to linearize, supply
missing definitions and appropriate linearize and
combine equations to make a comparison.

[Roland, 1973])Uses the same equations as Roland &
Massing 1971, corrects typos and includes a miss-
ing figure.

[Weir, 1972]) General model with tire models. He is the
only author to state explicitly that he compared his
equations to any compared work, Sharp 1971, with
which his equations are in agreement. Correct.

[Eaton, 1973]No review.
[Sing and Goel, 1975]Used Sharp’s equations and ex-

tended, we did not compare.
[Sharp and Jones, 1977]Sharp 1971 but with a differ-

ent tire model, when we removed the tire model it
agreed.

[Van Zytveld, 1975]No review.
[Weir and Zellner, 1978]In the mistaken belief that the

Weir 1972 derivation was incorrect they deleted a
necessary term and introduced some typos, incor-
rect.
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Figure 5. Sketch of the bicycle model for SPACAR input together

with node numbers, with straight arrows for positions, curved arrows

for orientations, and element numbers encircled.

[Gobas, 1978])General model, added forward acceler-
ation but the steering equation does not agree, in-
correct.

[Adiele, 1979] General model with tires, nonlinear, we
linearized, they are incorrect.

[Psiaki, 1979]No review.
[Lowel and McKell, 1982]Very specialist model, point

masses and no front mass, vertical axis and its in-
correct.

[Maers, 1988]No review.

B SPACAR Input
The sketch of this model is shown in Figure 5.

* benchmark1, linearized equations of motion
* elements
hinge 1 2 5 0 0 1
hinge 2 5 6 1 0 0
hinge 3 6 4 0 -1 0
hinge 4 4 8 0 -1 0
wheel 5 7 8 9 0 -1 0
pinbody 6 1 2 9
pinbody 7 3 4 7
pinbody 8 3 4 10
hinge 9 4 11 1 0 3
pinbody 10 10 11 12
pinbody 11 10 11 13
hinge 12 11 14 0 -1 0
wheel 13 13 14 15 0 -1 0
* nodes
x 1 0 0 0
x 3 0.3 0 -0.9
x 7 0 0 -0.3
x 9 0 0 0
x 10 0.8 0 -0.9
x 12 0.9 0 -0.7
x 13 1.02 0 -0.35
x 15 1.02 0 0
* boundary conditions
fix 1 1 2 3
fix 2 1 2 3 4
rlse 1 1
line 2 1
rlse 3 1
inpute 4 1
enhc 5 4 6 1
enhc 5 5 6 2

rlse 6 1 2 3
line 9 1
rlse 12 1
enhc 13 4 1 1
enhc 13 5 12 1
* mass & stiffness
mass 3 85
mass 4 9.2 0 2.4 11 0 2.8
mass 7 2
mass 8 0.06 0 0 0.12 0 0.06
mass 11 0.0546 0 -0.0162 0.06 0 0.0114
mass 12 4
mass 13 3
mass 14 0.14 0 0 0.28 0 0.14
* applied force, take g=9.81
force 3 0 0 833.85
force 7 0 0 19.62
force 12 0 0 39.24
force 13 0 0 29.43
* initial conditions and settings
ed 4 1 1.0
epskin 1e-6
epsint 1e-5
epsind 1e-5
timestep 1 1e-5
hmax 0.01
end
eof

C AutoSim Input
;;;; This is the file fiets.lsp, with the benchmark1 model.
;; Set up preliminaries:
(reset)
(si)
(add-gravity :direction [nz] :gees g)
(set-names g "Acceleration of gravity" )
(set-defaults g 9.81) ; this value is used in the benchmark,

; though g is a little smaller.
;; The name of the model is set to the string "fiets"
(setsym *multibody-system-name* "fiets")
;; Introduce a massless moving reference frame. This frame
;; has x and y translational degrees of freedoms and a yaw
;; rotational degree of freedom.
( add-body yawframe :name "moving yawing reference frame"

:parent n :translate (x y) :body-rotation-axes z
:parent-rotation-axis z :reference-axis x :mass 0
:inertia-matrix 0 )

;; Introduce another massless moving reference frame. This
;; frame has a rolling (rotational about a longitudinal
;; axis) degree of freedom.
( add-body rollframe :name "moving rolling reference frame"

:parent yawframe :body-rotation-axes (x)
:parent-rotation-axis x :reference-axis y :mass 0
:inertia-matrix 0 )

;; Add the rear frame of the bicycle. The rear frame has a
;; pitching (rotation about the local lateral y-axis of the
;; frame) degree of freedom.
( add-body rear :name "rear frame" :parent rollframe

:joint-coordinates (0 0 "-Rrw") :body-rotation-axes y
:parent-rotation-axis y :reference-axis z
:cm-coordinates (bb 0 "Rrw-hh") :mass Mr
:inertia-matrix ((Irxx 0 Irxz) (0 Iryy 0) (Irxz 0 Irzz)) )

( set-names
Rrw "Rear wheel radius"
bb "Longitudinal distance to the c.o.m. of the rear frame"
hh "Height of the centre of gravity of the rear frame"
Mr "Mass of the rear frame"
Irxx "Longitudinal moment of inertia of the rear frame"
Irxz "Minus product of inertia of the rear frame"
Iryy "Transversal moment of inertia of the rear frame"
Irzz "Vertical moment of inertia of the rear frame" )

( set-defaults Rrw 0.30 bb 0.3 hh 0.9
Mr 85.0 Irxx 9.2 Irxz 2.4 Iryy 11.0 Irzz 2.8 )

;; Add the rear wheel of the vehicle. This body rotates
;; about the y axis of its physical parent, the rear frame.
( add-body rw :name "rear wheel" :parent rear

:body-rotation-axes y :parent-rotation-axis y
:reference-axis z :joint-coordinates (0 0 0) :mass Mrw
:inertia-matrix (irwx "2.0*irwx" irwx) )

( set-names
Mrw "mass of the rear wheel"
irwx "rear wheel in-plane moment of inertia" )

(set-defaults Mrw 2.0 irwx 0.06)
;; Now we proceed with the front frame.
;; Define the steering and reference axes of the front frame:
;; Add in the front frame: define some points
( add-point head :name "steering head point B" :body n

:coordinates (xcohead 0 zcohead) )
( add-point frontcmpoint :name "c.o.m. of the front frame"

:body n :coordinates (xfcm 0 zfcm) )
( set-names

520



epsilon "steering head angle"
xcohead "x coordinate of the steering head point B"
zcohead "z coordinate of the steering head point B"
xfcm "x coordinate of the c.o.m. of the front frame"
zfcm "z coordinate of the c.o.m. of the front frame" )

( set-defaults epsilon 0.321750554396642163
xcohead 0.80 zcohead -0.90 xfcm 0.90 zfcm -0.70 )

( add-body front :name "front frame" :parent rear
:body-rotation-axes z :parent-rotation-axis
"sin(epsilon)*[rearx]+cos(epsilon)*[rearz]"
:reference-axis "cos(epsilon)*[rearx]-sin(epsilon)*[rearz]"
:joint-coordinates head :cm-coordinates frontcmpoint
:mass Mf
:inertia-matrix ((Ifxx 0 Ifxz) (0 Ifyy 0) (Ifxz 0 Ifzz))
:inertia-matrix-coordinate-system n )

( set-names
Mf "Mass of the front frame assembly"
Ifxx "Longitudinal moment of inertia of the front frame"
Ifxz "Minus product of inertia of the front frame"
Ifyy "Transversal moment of inertia of the front frame"
Ifzz "Vertical moment of inertia of the front frame" )

( set-defaults Mf 4.0
Ifxx 0.0546 Ifxz -0.0162 Ifyy 0.06 Ifzz 0.0114 )

;; Add in the front wheel:
( add-point fw_centre :name "Front wheel centre point"

:body n :coordinates (ll 0 "-Rfw") )
( add-body fw :name "front wheel" :parent front

:body-rotation-axes y :parent-rotation-axis y
:reference-axis "[nz]" :joint-coordinates fw_centre
:mass Mfw :inertia-matrix (ifwx "2.0*ifwx" ifwx) )

( set-names
ll "Wheel base"
Rfw "Radius of the front wheel"
Mfw "Mass of the front wheel"
ifwx "In-plane moment of inertia of the front wheel" )

(set-defaults ll 1.02 Rfw 0.35 Mfw 3.0 ifwx 0.14)
;; The system is now complete,
;; except for the contact constraints at the wheels.
;; The holonomic constraint at the rear wheel is
;; automatically satisfied. The rear wheel slip is zero.
( add-speed-constraint

"dot(vel(yawframe0),[yawframex])+Rrw*(ru(rear)+ru(rw))"
:u "tu(yawframe,1)" )

( add-speed-constraint "dot(vel(yawframe0),[yawframey])"
:u "tu(yawframe,2)" )

;; For the front wheel we have a holonomic constraint for
;; the contact and two non-holonomic slip constraints.
;; The slip velocities are defined now.
(setsym singammafw "dot([fwy],[nz])")
(setsym cosgammafw "sqrt(1-@singammafw**2)")
(setsym fw_rad "([nz] - [fwy]*@singammafw)/@cosgammafw")
( setsym slipfw_long

"dot(vel(fw0)+Rfw*cross(rot(fw),@fw_rad),[nx])" )
;; No longitudinal slip on front wheel;
;; eliminate rotational velocity about the axis
(add-speed-constraint "@slipfw_long" :u "ru(fw)")
;; normal constraint; eliminate the pitch angle
( setsym slipfw_n

"dot(vel(fw0)+Rfw*cross(rot(fw),@fw_rad),[nz])" )
(add-speed-constraint "@slipfw_n" :u "ru(rear)")
( add-position-constraint

"dot(pos(fw0),[nz])+Rfw*@cosgammafw" :q "rq(rear)" )
;; No lateral slip on front wheel;
;; eliminate yaw rate of the yawing frame
( setsym slipfw_lat

"dot(vel(fw0)+Rfw*cross(rot(fw),@fw_rad),[ny])" )
(add-speed-constraint "@slipfw_lat" :u "ru(yawframe)")
(dynamics)
(linear)
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