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ABSTRACT
Three formulations for a flexible spatial beam element fo

dynamic analysis are compared: a finite element method (FEM
formulation, an absolute nodal coordinate (ANC) formulation
with a continuum mechanics approach and an ANC formula
tion with an elastic line concept where the shear locking of th
asymmetric bending mode is suppressed by the application
the Hellinger–Reissner principle. The comparison is made b
means of an eigenfrequency analysis on two stylized problem
It is shown that the ANC continuum approach yields too larg
torsional and flexural rigidity and that shear locking suppresse
the asymmetric bending mode. The presented ANC formulatio
with the elastic line concept resolves most of these problems.

1 Introduction
Several finite element method (FEM) formulations for spa

tial finite beam elements to be used in multibody system dynam
ics programs can be found in the literature. A common approa
is to use a small displacement formulation with respect to a re
erence frame that describes the overall rigid body motion of th
beam[1, 2]. In order to reduce the number of degrees of free
dom, a limited number of assumed modes for the deformatio
are chosen. The linear contribution to the stiffness matrix du
to pre-stresses can be included by adding a geometric stiffne
matrix [3].
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A different way to describe the motion of the elements is
by using nodal coordinates that describe the configuration of the
element with respect to an inertial reference frame. This ap-
proach is more in line with traditional non-linear finite element
formulations used in statics. A convenient element formulation
was given by Van der Werff and Jonker[4], which was imple-
mented in the program SPACAR[5] and extended further in
Meijaard[6]. A number of generalized deformations are defined
that are invariant under rigid body motions, so arbitrary rigid
body motions can be described. On the other hand, the so-called
absolute nodal coordinate (ANC) formulation was recently pro-
posed by Shabana[7]. This formulation describes the position of
a material point within the element by interpolations based on the
Cartesian absolute coordinates of the nodal points and on gradi-
ents of these positions with respect to a reference configuration.
This leads to constant mass matrices for the elements, at the cost
of a more complicated description for the stiffness.

The purpose of the present paper is to make a comparison
between the finite element formulation for a two-noded spatial
beam as described in[6] and a corresponding absolute nodal co-
ordinate formulation as given in[8, 9]. It will be shown that the
continuum mechanics formulation given by[9] has some funda-
mental shortcomings. It is not possible to describe the warping
of the cross-section, so the shear stiffness lacks a shear correc-
tion factor and the torsional rigidity is too large for non-circular
cross-sections of the beam. Furthermore, the anticlastic defor-



mation of the cross-section cannot be described, so the resu
ing flexural rigidity is too large, and the shear deformation an
bending deformation are coupled for antisymmetric bending, s
effectively the beam has only a single bending mode. A mod
fication of the absolute modal coordinate formulation that is de
scribed in[8], with a stiffness description based on the elasti
line concept, is also included in the comparison. The modifi
cations consist of the inclusion of in-plane deformations of th
cross-section, so the linearized stiffness matrix has the approp
ate rank, and the elimination of the coupling between bendin
and shearing for the antisymmetric bending mode by means o
Hellinger–Reissner[10] formulation. In order to limit the efforts
in the comparison and to show the main differences in the form
lation clearly, only linearized eigenfrequencies for a single bea
are compared.

The organization of the paper is as follows. After this intro
duction, the FEM formulation and subsequently the ANC formu
lation and the proposed modifications are described. Then resu
on the eigenfrequencies of two stylized problems are present
and discussed. The paper ends with some conclusions.

2 FEM Beam
The finite beam element is a Timoshenko beam based

the elastic line concept. This means essentially that the beam
slender and the cross-section is doubly symmetric and more
less solid. The presentation of the element mainly follows[6].

The configuration of the element (Fig.1) is determined by
the position and orientation of the two end nodes, by which
can be coupled to and interact with other elements. The positio
of the end nodesp andq are given by their coordinatesxp and
xq in a global inertial systemOxyz, whereas the orientations are
determined by orthogonal triads of unit vectors(ep

x ,ep
y ,ep

z) and
(eq

x,e
q
y,e

q
z) which are rigidly attached to the nodes.
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Figure 1. FEM beam.

The unit vectorex is perpendicular to the average warped
cross-sectional plane of the beam in the sense of Cowper[11],
andey andez are in the principal directions of the cross-section
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In the absence of shear deformations,ex is tangent to the elastic
line of the beam. The change in orientation of the triads at the
end nodes is determined by an orthogonal rotation matrix. This
matrix can be parametrized by a choice of parameters, denoted
by ϑϑϑ, such as, Euler angles, modified Euler angles, Rodrigues
parameters and Euler parameters. In the SPACAR[5] software
system we use Euler parameters, but this choice is immaterial to
the description of the properties of the element.

2.1 Elastic Forces
The elastic forces are derived with the elastic line concept.

To prevent shear locking, the shear deformation will be directly
tied to the bending. Such a modification of the bending stiffness
can already be found in the book by Przemieniecki[12].

The element has 6 degrees of freedom as a rigid body, while
the nodes have 12 degrees of freedom. Hence the deformation
that is determined by the end nodes of the element can be de-
scribed by 6 independent generalized strains, which are functions
of the positions and orientations of the nodes and the initially
undeformed geometry. Withl = xq− xp and l the length of the
undeformed beam, we define the 6 generalized strains as

ε1 =
√

lT l− l , (elongation)
ε2 = l(epT

z eq
y−epT

y eq
z)/2, (torsion)

ε3 =−lTep
z , ε4 = lTeq

z, (bending in xz-plane)
ε5 = lTep

y , ε6 =−lTeq
y. (bending in xy-plane)

(1)
These generalized strains, which may be compared to what Ar-
gyris called natural modes[13], are invariant under arbitrary rigid
body motions, so they truly measure the amount of strain in the
element. If we group the positions and orientations of the nodes
in a vectorx = (xp,ϑϑϑp,xq,ϑϑϑq) and denote the vector of gener-
alized deformations byεεε, then we can write for the generalized
strains(1) symbolically

εi = Di(xk), i = 1, . . . ,6, k = 1, . . . ,12. (2)

The dual quantities of the generalized strainsεεε are the gener-
alized stressesσσσ. The physical meaning of these stresses is found
by equating the internal virtual work of the elastic forcesσσσTδεεε to
the external virtual workfTδu of the nodal forces. Substitution
of the virtual generalized strains derived from(2) results in

σiδεi = σiDi,kδuk = fkδuk ∀ δuk, (3)

with the small nodal displacements and rotationsuT =
(upT,ϑϑϑpT,uqT,ϑϑϑqT), and a subscript after the comma to denote
partial derivatives. From this we derive the force equilibrium
Copyright c© 2005 by ASME



conditions for the element as

fk = Di,kσi , (4)

In the case of small deformations, the generalized stresses hav
clear physical meaning. As the deformed and undeformed geo
etry are nearly the same, we consider the undeformed situati
in which the beam central axis coincides with the globalx-axis.
For the rotational parametersϑϑϑ we choose the small rotations
about the three coordinate axesϕx,ϕy andϕz. The Jacobian of
the generalized strains then takes the values

D0
i,k =




−1 0 0 0 0 0 1 0 0 0 0 0
0 0 0−l 0 0 0 0 0 l 0 0
0 0 1 0−l 0 0 0−1 0 0 0
0 0−1 0 0 0 0 0 1 0 l 0
0 −1 0 0 0−l 0 1 0 0 0 0
0 1 0 0 0 0 0−1 0 0 0 l




(5)

The equilibrium nodal force system according to(4) is then given
by

Fp = (−σ1,σ6−σ5,σ3−σ4), M p = (−σ2l ,−σ3l ,−σ5l),
Fq = (σ1,σ5−σ6,σ4−σ3), Mq = (σ2l ,σ4l ,σ6l).

(6)
From this result we interpret thatσ1 is the normal force,σ2l is
the torsion moment, andσ3l ,σ4l ,σ5l and σ6l are the bending
moments at the nodesp andq.

If for each beam element the strains remain small by divid
ing the overall beam in sufficiently many elements, then the usu
linear stress-strain relation can be applied which results for th
generalized stresses and strains in

σi = Si j ε j i, j = 1, . . . ,6, (7)

where the stiffnessSi j = diag(S1,S2,S3,S4) is given by

S1 = EA/l , S2 = St/l3,

S3 =
EIy

(1+Φz)l3

(
4+Φz −2+Φz

symm. 4+Φz

)
, Φz =

12EIy
GAkzl2

S4 =
EIz

(1+Φy)l3

(
4+Φy −2+Φy

symm. 4+Φy

)
, Φy =

12EIz
GAkyl2 .

(8)

Here, E is the modulus of elasticity (Young’s modulus),G is
the shear modulus,A is the area of the cross-section,St is the
torsional stiffness,Iy andIz are the area moments of inertia of the
cross-section with respect to the principal axes, andky andkz are
3
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the shear coefficients according to Cowper[11]. Note that the
inclusion of the shear deformation is done by a slightly modified
stiffness matrix[12]. This tying of the shear deformation to the
bending by means of the statics of the beam prevents problems
of shear locking.

Finally the element stiffness matrix is obtained by taking
partial derivatives of the nodal forcesf with respect to the small
nodal displacementsu, resulting in a tangent stiffness matrix

K̄i j = Dk,iSklDl , j +Dk,i j σ j , (9)

which consists of two parts. The last part is the geometric stiff-
ness matrix, which, evaluated in the undeformed and unstressed
geometry, is identical to zero, and the first part is the linear stiff-
ness matrix

K0
i j = D0

k,iSklD
0
l , j . (10)

2.2 Inertia Forces
The derivation of the consistent mass formulation for the

flexible spatial beam element is based on the elastic line con-
cept. To arrive at a Timoshenko beam the rotary inertia of the
cross-section will be included by a separate interpolation of the
orientation of the cross-section along the elastic line.

The interpolation for the positions on the elastic line for fi-
nite deformation is taken as

r(ξ) = (1−3ξ2 +2ξ3)xp +(ξ−2ξ2 +ξ3)lep
x

+(3ξ2−2ξ3)xq +(−ξ2 +ξ3)leq
x,

(11)

whereξ = x/l . The first part of the mass matrix is obtained by
evaluating the integral

m
∫ 1

0
δṙT r̈dξ, (12)

wherem is the total mass of the beam. If the rotations at the nodes
are parametrized byϑϑϑp andϑϑϑq, this results in a mass matrix

M =
m

420




156I 22lA 54I −13lB
4l2ATA 13lAT −3l2ATB

156I −22lB
symm. 4l2BTB


 (13)

and inertia terms which are quadratic in the velocities[6], where

A = ∂ep
x/∂ϑϑϑp, B = ∂eq

x/∂ϑϑϑq. (14)
Copyright c© 2005 by ASME



Clearly the mass matrix is not constant and moreover, the equ
tions of motion contain convective inertia forces. The secon
part of the mass matrix takes into account the rotary inertia o
the cross-section. The rotations of the cross-section along t
elastic line are interpolated in the same manner as the elastic l
but with the inclusion of the shear deformation resulting in

ϕx = (1−ξ)ϕp
x +ξϕq

x

ϕy =
1

1+Φz
{[6ξ(1−ξ)](wp−wq)/l

+[(1−4ξ+3ξ2)+(1−ξ)Φz]ϕp
y

+[(−2ξ+3ξ2)+ξΦz]ϕ
q
y)},

ϕz =
1

1+Φy
{[6ξ(1−ξ)](vq−vp)/l

+[(1−4ξ+3ξ2)+(1−ξ)Φy]ϕ
p
z

+[(−2ξ+3ξ2)+ξΦy]ϕ
q
z)},

(15)

where the small nodal displacements and rotations are given b

u = (up,vp,wp,ϕp
x ,ϕp

y ,ϕp
z ,uq,vq,wq,ϕq

x,ϕ
q
y,ϕ

q
z) (16)

If we denote the mass moment of inertia along the principal axe
of an infinitesimal small section bydIx,dIy anddIz then the fol-
lowing integral

∫ s=l

s=0
(δϕ̇xdIxϕ̈x +δϕ̇ydIyϕ̈y +δϕ̇zdIzϕ̈z), (17)

results in a mass matrix with the contributions of the rotary iner
tia of the cross-section. If the principal dimension of the cross
section ish, then this contribution is of the order(h/l)2 compared
with the entries of the regular mass matrix(13).

3 ANC beam
In this section a two node spatial beam element accor

ing to the absolute nodal coordinate formulation will be pre
sented. Here we follow mainly the description by Shabana an
Yakoub[8,9].

A distinguishing point in the ANC formulation is the usage
of slope vectors to describe the orientation of the cross-section
the nodes, where the slope vectors are not necessarily unit v
tors. This leaves more room for the cross-section to deform a
change shape. It is expected[8,9] that this type of description, to-
gether with a three-dimensional continuum mechanics approac
leads to more accurate results. A well-known major advantage
this description is that it leads to a constant mass matrix. Unfo
tunately, the expressions for the elastic forces are more comple
4
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Figure 2. ANC beam

The configuration of the beam element (Fig.2) is determined
by the position and orientation of the two end nodesp and q.
Each node is defined by one vector for the positionr and three
vectors for the slopesrx, ry and rz, where every vector is ex-
pressed in a global inertial systemOxyz. Thus the element has
24 nodal coordinates given by the vector

e= [r pT, r pT
x , r pT

y , r pT
z , rqT, rqT

x , rqT
y , rqT

z ]T (18)

The location of an arbitrary pointr in the beam is determined by
the interpolation

r = S(x,y,z)e (19)

whereS is the element shape function ande is the vector of nodal
coordinates. The shape function is obtained using polynomials
which are in this case cubic inx and linear iny andz, where the
x-direction is initially along the central axis of the beam. The
element shape function matrixS is now defined as

S= [S1I ,S2I ,S3I ,S4I ,S5I ,S6I ,S7I ,S8I ], (20)

whereI is the 3 by 3 identity matrix and the polynomials

S1 = 1−3ξ2 +2ξ3, S2 = l(ξ−2ξ2 +ξ3),
S3 = l(1−ξ)η, S4 = l(1−ξ)ζ,
S5 = 3ξ2−2ξ3, S6 = l(−ξ2 +ξ3),
S7 = lξη, S8 = lξζ,

(21)

with the non-dimensional coordinates

ξ = x/l , η = y/l , ζ = z/l , (22)

andl the initial length of the beam. The initial undeformed con-
figuration where the beam central axis coincides with the global
Copyright c© 2005 by ASME



x-axis is

r0 = Se0 (23)

with the initial nodal coordinatese0 as

e0 = [0T ,eT
x ,eT

y ,eT
z , leT

x ,eT
x ,eT

y ,eT
z ]T (24)

with fixed triads(ex,ey,ez) of the global inertial systemOxyz.
Indeed, substitution ofe0 in (23) leads to the identitiesr0 =
(x,y,z)T .

3.1 Elastic Forces, continuum approach
The elastic forces are derived from a general continuum m

chanics approach. We start from the displacementsu of an arbi-
trary point of the beam expressed in the globalOxyzcoordinate
system as given by

u = r − r0. (25)

Substitution of these displacements in the Green–Lagrange s
tensor

εi j =
1
2
(ui, j +u j,i +uk,iuk, j), i, j,k = x, . . . ,z. (26)

where partial derivatives are denoted byux,y = ∂ux/∂y. . ., leads
to the strain tensor expressed in the absolute coordinatesr and
their derivatives as

εi j =
1
2
(rk,irk, j −δi j ) =

1
2




rT
,xr ,x−1 rT

,xr ,y rT
,xr ,z

rT
,yr ,y−1 rT

,yr ,z
symm. rT

,zr ,z−1




(27)
From this we identify 6 independent strain components wh
we write in the form of a strain vectorε such that the vector dot
product1

2σσσTεεε represents the elastic energy. This strain vecto
now

ε1 = 1
2

(
rT
,xr ,x−1

)
, ε2 = 1

2

(
rT
,yr ,y−1

)
, ε3 = 1

2

(
rT
,zr ,z−1

)
,

ε4 = rT
,xr ,y, ε5 = rT

,yr ,z, ε6 = rT
,zr ,x

(28)
The virtual work of the elastic forces now can be written as

δW =
∫

V
σσσTδεεεdV. (29)
5
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Under the assumption of a linear elastic isotropic material the
stress vectorσσσ is related to the strain vector as

σσσ = Eεεε, (30)

where the non-zero elastic coefficientsE are given by

Ei j =
2G

(1−2ν)




1−ν ν ν
ν 1−ν ν
ν ν 1−ν


 , i, j = 1, . . . ,3,

Ekk = G, k = 4, . . . ,6.

(31)

Equating the virtual work of the elastic forces with the virtual
work of the external nodal forcesQ as in

∫

V
σσσTδεεεdV = QTδe, (32)

yields the elastic nodal forces expressed in terms of the nodal
displacements

Q =
∫

V
(∂εεε/∂e)TEεεεdV (33)

The tangent stiffness matrix is obtained by linearizing the elastic
forces with respect to the nodal displacements

K̄ =
∫

V
(∂εεε/∂e)TE(∂εεε/∂e)dV +

∫

V
(∂2εεε/∂e2)TEεεε dV (34)

The last matrix is the geometric stiffness matrix, which evaluated
in the undeformed and unstressed geometry is identical to zero,
whereas the first matrix is the linear stiffness matrix

K =
∫

V
(∂εεε/∂e)TE(∂εεε/∂e)dV. (35)

Finally, we will evaluate the linear stiffness matrix in the unde-
formed geometry. With the notion that the slopes in the initially
undeformed geometry are identical to the global directions

(∂r ,x/∂e)0 = ex, (∂r ,y/∂e)0 = ey, (∂r ,z/∂e)0 = ez (36)

the partial derivatives of the strain vector evaluated at this initial
undeformed configuration become

(∂εεε/∂e)0 =




S1,x

S2,y

S3,z

S1,y +S2,x

S2,z+S3,y

S3,x +S1,z




0

(37)
Copyright c© 2005 by ASME



Substitution into (35) and evaluating the integral over the volume
of the beam leads to the desired linear stiffness matrix

K0 =
∫

V
(∂εεε/∂e)0TE(∂εεε/∂e)0dV. (38)

3.2 Inertia forces
The absolute nodal coordinate formulation leads to inert

forces which can be expressed as the product of a constant m
matrix times the accelerations of the nodal coordinates. The
are no inertia forces which are quadratic in the velocities. Th
constant mass matrix is defined as

M =
∫

V
ρSTSdV. (39)

The above integral defines a mass matrix which only depends
the mass distribution and the dimensions of the beam and, un
the assumption of a consistent shape function, captures all lin
and rotary inertia effects.

3.3 Elastic forces, elastic line approach
As an alternative to the general continuum approach[9]

where we suspect the forces to show shear locking, we propo
to derive the elastic forces for the beam from an elastic line co
cept. For the interpolation of points of the beam we will still us
the same cubic/linear form as in the continuum approach(19, 20)
but all deformations, extension, shear, torsion, and bending, w
be evaluated on the elastic line.

First we define the slopes on the elastic line as

r x = r ,x(x,0,0), ry = r ,y(x,0,0), rz = r ,z(x,0,0). (40)

With these slopes we define 9 generalized deformations

εx = 1
2(rT

x rx−1), εy = 1
2(rT

y r y−1), εz = 1
2(rT

z rz−1),

γyz = rT
y r z γxy = rT

x ry, γxz = rT
x r z,

κx = 1
2(rT

z r
′
y− rT

y r
′
z), κy = rT

z r
′
x, κz =−rT

y r
′
x

(41)
where a prime denotes a derivative with respect tox. The first
four, εx,εy,εz andγyz represent the extension of the beam and th
deformation of the cross-section,γxy and γxz are the transverse
shear deformations,κx is the torsion, andκy andκz are the bend-
ing deformations.

The strain energyWe of the beam is the sum of the strain
energies of the extension and deformation of the cross-section

Wl =
1
2

l
∫ 1

0
(Aε̄iEi j ε̄ j)dξ, i, j = 1, . . . ,4, (42)
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with the strains̄εi = (εx,εy,εz,γyz) and the elasticity coefficients
Ei j as in (31), the transverse shear deformation

Ws =
1
2

l
∫ 1

0
(GAkyγ2

xy+GAkzγ2
xz)dξ (43)

and the torsion and bending

Wt =
1
2

l
∫ 1

0
(Stκ2

x)dξ, Wb =
1
2

l
∫ 1

0
(EIyκ2

y +EIzκ2
z)dξ, (44)

makingWe = Wl +Ws+Wt +Wb. With the cubic/linear interpo-
lation on the elastic line according to (20) and (40) we suspect
that adding the contribution of the shear deformation according
to (43) will result in shear locking. Therefore we propose to add
the shear stiffness by means of the Hellinger–Reissner princi-
ple [10]. In this approach we are free to define both the displace-
ments field and the stress distribution. This can be very advanta-
geous if the stress distribution, usually from an engineering point
of view, is known beforehand. In the case of pure shear defor-
mation we assume that the shear forces will vary linearly over
the elastic line of the element. The strain energy of the shear
deformation is the sum of the shear in they and thez direction.
We start with shear forces in thez direction, and assume a linear
shear stress distribution according to,

τxz = Nτττ∗, (45)

with the shape function

N = ((1−ξ),ξ) , (46)

and the nodal shear stresses

τττ∗ = (τp
xz,τ

q
xz)

T . (47)

The strain energy according to he Hellinger–Reissner principle
is

W∗
sz=

∫

V
(τT

xzγxz−Wc(τxz))dV, (48)

whereWc is the complementary shear stress energy according to

Wc(τxz) =
1

2Gkz
τT

xzτxz, (49)
Copyright c© 2005 by ASME



with shear factorkz to account for the fact that the shear stress
is not uniformly distributed over the cross-section[11]. Substi-
tution of the linear shear stress distribution from (45) results in a
strain energy

W∗
sz=

∫

V
(τττ∗TNTγxz− 1

2Gkz
τττ∗TNTNτττ∗)dV, (50)

with the shear strain distributionγxz according to (41). For this
shear strain energy we seek a stationary value with respect to t
generalized shear stress parametersτττ∗, resulting in

δW∗
sz=

∫

V
δτττ∗T(NTγxz− 1

Gkz
NTNτττ∗)dV = 0. (51)

Integration over the volume yields

Wxz−Fzτττ∗ = 0 (52)

with the energy terms

Wxz(e) = Al
∫ 1

0
(NTγxz(e))dξ (53)

which are in general non-linear functions in the nodal coordi
nateseand the constant coefficient matrix

Fz =
Al

Gkz

(
1/3 1/6
1/6 1/3

)
(54)

From this we can solve for the generalized shear stress param
ters

τττ∗ = SzWxz, Sz = F−1
z =

Gkz

Al

(
4 −2

−2 4

)
. (55)

Substitution in the original shear energy function yields the shea
energy according to the Hellinger–Reissner principle

W∗
sz=

1
2

WT
xzSzWxz. (56)

The shear strain energy for shear forces in they directions,W∗
sy

can be derived in the same manner resulting in a total shear stra
energy function of

W∗
s =

1
2

WT
xySyWxy+

1
2

WT
xzSzWxz. (57)
7
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The strain energy for the beam with the adapted shear stiffness
according to the Hellinger–Reissner principle now becomes

We∗ = Wl +W∗
s +Wt +Wb. (58)

The linear stiffness matrix is found in the same manner as in
Section3.1. The elastic forces are determined from equating the
variation of the elastic energy with the virtual work of the nodal
forces

δWe∗ = (∂We∗/∂e)δe= QeTδe (59)

Then the linear stiffness matrix is found by linearizing the elastic
forces with respect to the nodal coordinates at the undeformed
reference configuration

K = (∂Qe/∂e)0. (60)

Because the elastic energy is a direct sum of contributions due
to extension, shear, torsion, and bending the same holds for the
stiffness matrix. The individual contributions to the stiffness ma-
trix are, for the extension

K l = l
∫ 1

0
(A(ε̄i,e)0TEi j (ε̄ j,e)0)dξ, i, j = 1, . . . ,4, (61)

for the shear deformation

K s = (Wxy,e)0TSy(Wxy,e)0 +(Wxz,e)0TSz(Wxz,e)0, (62)

for the torsion

K t = l
∫ 1

0
(St(κx,e)0T(κx,e)0)dξ, (63)

and for the bending

Kb = l
∫ 1

0
(EIy(κy,e)0T(κy,e)0)dξ+ l

∫ 1

0
(EIz(κz,e)0T(κz,e)0)dξ.

(64)
The partial derivatives of the generalized strains with respect to
the nodal coordinates in the initially undeformed configuration
take on even simpler forms as in(36) and (37) since the only
variable is now the elastic line coordinatex.
Copyright c© 2005 by ASME
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4 Results and Discussion
In this section the three different element formulations wi

be compared. Since every element uses a different set of no
coordinates, the comparison will be made by means of an eig
frequency analysis of the free vibration of a simply supporte
beam and of a cantilever beam, both modelled by one eleme
The beam has an undeformed lengthl and a uniform square
cross-section of width and heighth = 0.02l . The Poisson ratio
of the material isν = 0.3. The shear factors for a square cross
section areky = kz = 10(1+ ν)/(12+ 11ν) [11]. The torsional
stiffness is given bySt = GkxIp, with G= E/[2(1+ν)], the shear
distribution factorkx = 0.8436[14], and the polar area moment
of inertiaIp = Iy + Iz.

The first case is a simply supported beam. The bounda
conditions for the FEM beam are straightforward. Both nod
are supported in theyz-plane plus the horizontal displacement in
nodep and the rotation along the central axis are restricted. Th
leaves 6 degrees of freedom, namely

uc = (ϕp
y ,ϕp

z ,uq,ϕq
x,ϕ

q
y,ϕ

p
z). (65)

For the ANC formulated element we apply the same bounda
conditions, where the rotation along the central axis in nodep
is suppressed by fixing the displacement of the sloper p

z in the
y-direction,vp

z . The remaining degrees of freedom, 18 in tota
are

uc = (up
x ,vp

x ,wp
x ,up

y ,vp
y ,wp

y ,up
z ,wp

z ,
uq,uq

x,v
q
x,w

q
x,u

q
y,v

q
y,w

q
y,u

q
z,v

q
z,w

q
z),

(66)

where we the displacements of a slope vectorr p
x are denoted

by (up
x ,vp

x ,wp
x) and so forth. The results of this analysis ar

presented in Table1. The first observation that we make is
that the ANC formulation yields 12 further eigenfrequencie
of which 10 are local modes with a high frequency. The fir
bending mode in the continuum ANC is too high by a facto√

(1−ν)/(1+ν)/(1−2ν) ≈ 1.16, because the anticlastic de-
formation of the cross-section cannot be described by the co
tinuum displacement field. Note that this result is also present
the dynamic response of the mid-point deflection of the pend
lum beam from Fig.8 in [9]. The torsional eigenfrequency is also
too high, because the factorkx is not included. The continuum
ANC gives a large value for the second bending mode, beca
this mode is coupled to a shearing deformation, a phenomen
that is referred to as shear locking. The modified ANC formu
lation gives a far more realistic value. The exact values of t
factors for an Euler–Bernoulli beam areπ2 and4π2. The ANC
gives good approximations for the longitudinal eigenfrequencie
because the interpolation is cubic instead of linear. Compare
numerical factors with the exact factors that follow from a slen
der rod theory,(2k−1)π/2, k = 1,2,3, . . ..
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Mode FEM ANC con. ANC el. unit

2 bending (symm.) 10.953 12.699 10.954
√

EI
ml3

2 bending (asymm.) 50.134 696.14 50.200
√

EI
ml3

torsion 1.5908 1.7319 1.5908
√

GA
ml

longitudinal1st 1.6408 1.5724 1.5724
√

EA
ml

longitudinal2nd – 5.0546 5.0548
√

EA
ml

longitudinal3rd – 11.585 11.586
√

EA
ml

– 107.42 198.03
√

EA
ml

10 modes – · · · · · ·
– 240.24 480.40

√
EA
ml

Table 1. Eigenfrequencies for a simply supported beam.

The second case is a cantilever beam. The boundary condi-
tions for the FEM beam are straightforward. Thep node is fully
suppressed in both displacement and orientation and theq is free.
This leaves 6 degrees of freedom, namely

uc = (uq,vq,wq,ϕq
x,ϕ

q
y,ϕ

p
z). (67)

For the ANC element we first suppress the displacements of the
p node. Then to suppress the rotation of the cross-section atp we
suppress the displacement of the sloper p

y in thex andzdirection,
up

y andwp
y , and the sloper p

z in thex direction,up
z . The remaining

degrees of freedom, 18 in total, are

uc = (up
x ,vp

x ,wp
x ,vp

y ,vp
z ,wp

z ,
uq,vq,wq,uq

x,v
q
x,w

q
x,u

q
y,v

q
y,w

q
y,u

q
z,v

q
z,w

q
z).

(68)

The results of this analysis are presented in Table2. For this
case, the results for the longitudinal and torsion eigenfrequencies
are as in the simple supported case. For bending, we see the sam
kind of phenomena as before, especially the shear locking in the
second bending mode for the continuum ANC. The elastic line
ANC still gives rather high values for the bending eigenvalues.
This can be attributed to the difficulty in prescribing the condition
of zero rotation of the cross-section for the clamped end. Because
the Hellinger–Reissner formulation relaxes the rigidity against
shear deformation, shear can still occur at the ends of the beam
for asymmetric bending; the shear is only small in an average
sense. The acurate numerical factors for the bending modes of
an Euler–Bernoulli beam are 3.5156 and 22.0336.
Copyright c© 2005 by ASME
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Mode FEM ANC con. ANC el. unit

2 bending1st 3.5316 5.1860 4.4654
√

EI
ml3

2 bending2nd 34.760 361.69 59.655
√

EI
ml3

2 bending/shearing – 980.38 791.50
√

EI
ml3

torsion 1.5908 1.7319 1.5908
√

GA
ml

longitudinal 1.6408 1.5724 1.5724
√

EA
ml

longitudinal2nd – 5.0546 5.0548
√

EA
ml

longitudinal3rd – 11.585 11.586
√

EA
ml

– 107.43 198.06
√

EA
ml

8 modes – · · · · · ·
– 240.24 480.40

√
EA
ml

Table 2. Eigenfrequencies for a cantilever beam.

5 Conclusion
In this paper some formulations for a flexible spatial beam

have been compared. In general, the FEM formulation give
good results for the linearized case. Some shortcomings in t
spatial beam formulation given by[9] were found, especially that
it yielded too large torsional and flexural rigidities and that shea
locking effectively suppressed the asymmetric bending mod
An elastic line ANC formulation, along similar lines as in[8]
has been proposed. This formulation yielded better torsional a
flexural rigidities. The shear locking of the asymmetric bendin
mode could be suppressed by the aid of the application of th
Hellinger–Reissner principle; the problem of the proper impos
tion of clamped boundary conditions remains.

As a direction of future research, it is desirable to develo
the spatial beam ANC formulation based on the elastic line co
cept further.
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