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ABSTRACT A different way to describe the motion of the elements is
Three formulations for a flexible spatial beam element for by using nodal coordinates that describe the configuration of th
dynamic analysis are compared: a finite element method (FEM) element with respect to an inertial reference frame. This ap
formulation, an absolute nodal coordinate (ANC) formulation proach is more in line with traditional non-linear finite element
with a continuum mechanics approach and an ANC formula- formulations used in statics. A convenient element formulatior
tion with an elastic line concept where the shear locking of the was given by Van der Werff and Jonkgt], which was imple-
asymmetric bending mode is suppressed by the application of mented in the program SPACAR] and extended further in
the Hellinger—Reissner principle. The comparison is made by Meijaard[6]. A number of generalized deformations are defined
means of an eigenfrequency analysis on two stylized problems. that are invariant under rigid body motions, so arbitrary rigid
It is shown that the ANC continuum approach yields too large body motions can be described. On the other hand, the so-calle
torsional and flexural rigidity and that shear locking suppresses absolute nodal coordinate (ANC) formulation was recently pro-
the asymmetric bending mode. The presented ANC formulation posed by Shabarj@]. This formulation describes the position of
with the elastic line concept resolves most of these problems.  a material point within the element by interpolations based on th
Cartesian absolute coordinates of the nodal points and on grac
ents of these positions with respect to a reference configuratiol

1 Introduction This leads to constant mass matrices for the elements, at the c«
Several finite element method (FEM) formulations for spa- ©f @ more complicated description for the stiffness.
tial finite beam elements to be used in multibody system dynam- The purpose of the present paper is to make a comparisc

ics programs can be found in the literature. A common approach between the finite element formulation for a two-noded spatia
is to use a small displacement formulation with respect to a ref- beam as described [6] and a corresponding absolute nodal co-
erence frame that describes the overall rigid body motion of the ordinate formulation as given ii8, 9]. It will be shown that the

beam[1, 2]. In order to reduce the number of degrees of free- continuum mechanics formulation given [8} has some funda-

dom, a limited number of assumed modes for the deformations mental shortcomings. It is not possible to describe the warpin
are chosen. The linear contribution to the stiffness matrix due of the cross-section, so the shear stiffness lacks a shear corre
to pre-stresses can be included by adding a geometric stiffnesstion factor and the torsional rigidity is too large for non-circular
matrix [3]. cross-sections of the beam. Furthermore, the anticlastic defo
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mation of the cross-section cannot be described, so the result-In the absence of shear deformatioggis tangent to the elastic
ing flexural rigidity is too large, and the shear deformation and line of the beam. The change in orientation of the triads at the
bending deformation are coupled for antisymmetric bending, so end nodes is determined by an orthogonal rotation matrix. Thi:
effectively the beam has only a single bending mode. A modi- matrix can be parametrized by a choice of parameters, denote
fication of the absolute modal coordinate formulation that is de- by 8, such as, Euler angles, modified Euler angles, Rodrigue
scribed in[8], with a stiffness description based on the elastic parameters and Euler parameters. In the SPAQZIRoftware
line concept, is also included in the comparison. The modifi- system we use Euler parameters, but this choice is immaterial |
cations consist of the inclusion of in-plane deformations of the the description of the properties of the element.
cross-section, so the linearized stiffness matrix has the appropri-
ate rank, and the elimination of the coupling between bending i
and shearing for the antisymmetric bending mode by means of a 2-1 _Elastic Forces _ . o
Hellinger—Reissndil0] formulation. In order to limit the efforts The elastic forces are derived with the elastic line concept
in the comparison and to show the main differences in the formu- T0 Prevent shear locking, the shear deformation will be directly
lation clearly, only linearized eigenfrequencies for a single beam ti€d to the bending. Such a modification of the bending stiffnes:
are compared. can already be found in the book by Przemienigtkj.

The organization of the paper is as follows. After this intro- The element has 6 degrees of freedom as a rigid body, whil
duction, the FEM formulation and subsequently the ANC formu- the nodes have 12 degrees of freedom. Hence the deformatic
lation and the proposed modifications are described. Then resultsthat is determined by the end nodes of the element can be d

undeformed geometry. With= x9— xP andl the length of the
undeformed beam, we define the 6 generalized strains as

2 FEM Beam
The .f|n|.te beam elemept is a T|mosher_1ko beam based on £ = m*h (elongation)
the elastic line concept. This means essentially that the beam is 1 /PT.a T g .
o : H=I(e; &y— ¢ &)/2, (torsion)
slender and the cross-section is doubly symmetric and more or 3= —ITeP e2=1Ted.  (bending in xz-plane)
less solid. The presentation of the element mainly foll§ys £o — ITe)'?, £g = —ITe),Oﬁ (bending in xy-plane)

The configuration of the element (Fid)) is determined by @

the ;t))osmonlagd one(;]_tatlon of t_hﬁ tV\rI10 enld nodes, t?]y which it thase generalized strains, which may be compared to what A
can be coupled to and interact with other elements. The positions gy i called natural modds3], are invariant under arbitrary rigid

of the end nodep andq are given by their coordinated® and
x9in a global inertial systerdxyz whereas the orientations are
determined by orthogonal triads of unit vectde§, e}, eb) and
(ef, ), €)) which are rigidly attached to the nodes.
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Figure 1. FEM beam.

The unit vectore, is perpendicular to the average warped
cross-sectional plane of the beam in the sense of Cojtdér

ande, ande;, are in the principal directions of the cross-section.

2

body motions, so they truly measure the amount of strain in the
element. If we group the positions and orientations of the node
in a vectorx = (xP, 8P x9,89) and denote the vector of gener-
alized deformations bg, then we can write for the generalized
strains(1) symbolically

& = Di(x), (2

The dual quantities of the generalized str&iase the gener-
alized stressas. The physical meaning of these stresses is founc
by equating the internal virtual work of the elastic foregse to
the external virtual work" du of the nodal forces. Substitution
of the virtual generalized strains derived fr@¢) results in

0;0g; = ciDi,kéuk = fkéuk v 5Uk,

3)

with the small nodal displacements and rotations =
(uPT 9PT udT 99T), and a subscript after the comma to denote
partial derivatives. From this we derive the force equilibrium
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conditions for the element as the shear coefficients according to Cowpkt]. Note that the
inclusion of the shear deformation is done by a slightly modified
stiffness matrif12]. This tying of the shear deformation to the
bending by means of the statics of the beam prevents problen
of shear locking.

In the case of small deformations, the generalized stresses have a  Finally the element stiffness matrix is obtained by taking
clear physical meaning. As the deformed and undeformed geom- partial derivatives of the nodal forcésvith respect to the small
etry are nearly the same, we consider the undeformed situation nodal displacements, resulting in a tangent stiffness matrix

in which the beam central axis coincides with the glabakis.

For the rotational parametefs we choose the small rotations - A _ o

about the three coordinate axips ¢y and¢,. The Jacobian of Kij = DiiSaDij + Diij 0, ©

the generalized strains then takes the values

fk = Dik0i, 4)

which consists of two parts. The last part is the geometric stiff-
ness matrix, which, evaluated in the undeformed and unstresst
geometry, is identical to zero, and the first part is the linear stiff-
ness matrix

0

© o

01
00
00
00 ®)
-1 0

K? = DP;SaD?;. (10)
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2.2 Inertia Forces

The equilibrium nodal force system according4dis then given The derivation of the consistent mass formulation for the

by flexible spatial beam element is based on the elastic line cor
cept. To arrive at a Timoshenko beam the rotary inertia of the
FP = (-01,06 — 05,03 — 04), MP = (—02l,—03l, —0sl), cross-section will be included by a separate interpolation of the
F9 = (01,05 —06,04—03), M9=(02l,04l,06l). orientation of the cross-section along the elastic line.
(6) The interpolation for the positions on the elastic line for fi-
From this result we interpret that, is the normal forceg,l is nite deformation is taken as
the torsion moment, andsl,oyl,05l andogl are the bending
moments at the nodgsandq. _ . N rE) = (1— 382 +2£3)Xp+ (5 — 252+€3)|65F<) 11
If for each beam element the strains remain small by divid- (382 - 283)x9 4 (— 82+ £3)I e, (11)

ing the overall beam in sufficiently many elements, then the usual

linear stress-strain relation can be applied which results for the
generalized stresses and strains in whereg = x/I. The first part of the mass matrix is obtained by

evaluating the integral

oi=Sjg i,j=1...6 ) )
m / & Tk, (12)
where the stiffnesSj = diag(S;, S, Sz, S4) is given by 0

wheremis the total mass of the beam. If the rotations at the node

S =EA/I, S = S/I3, are parametrized b§P and89, this results in a mass matrix
S = Ely <4+<Dz —2+<Dz> L= 12E1,
(1+®, )13 \ symm. 44-@; )’ GAkl? (8) 156 22A 54 -13B
6o  El <4+q>y oy ¢y> o 1L M= o UZATA 135§ ‘3'223;5 (13)
(1+®y)13 \symm. 4+ /7 7 GAKI2 symm. 42B™B

Here, E is the modulus of elasticity (Young’s modulus}, is
the shear modulusA is the area of the cross-sectidf, is the
torsional stiffnessly andl; are the area moments of inertia of the
cross-section with respect to the principal axes, lgrahdk; are A = 0el /08P, B = 0¢€l/099. (14)

and inertia terms which are quadratic in the velocif&swhere
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Clearly the mass matrix is not constant and moreover, the equa- rz

tions of motion contain convective inertia forces. The second oy .
part of the mass matrix takes into account the rotary inertia of 7y Vi / ry
the cross-section. The rotations of the cross-section along the \ < P )
elastic line are interpolated in the same manner as the elastic line rP r i rd e
but with the inclusion of the shear deformation resulting in z
w
dx = (1-8)0% + £} o . .
1
_ _ p_
by 1+ d, [BE(1— )] (w" —wi) /! Figure 2. ANC beam
H(1- 48 +38%) + (1 §) 070y
28+ 382) +EDJdy) ),
(=284 385 + E2fdy)} (15) The configuration of the beam element (RA)is determined
b, = i{[6£(1_£)](\ﬂ_vp)/| by the posit.ion and orientation of the two end n_oqheand g.
1+®y 5 o Each node is defined by one vector for the positicand three
+H[(1-48+38%) + (1*q5)¢y]¢2 vectors for the slopesy,ry andr,, where every vector is ex-
+[(—28+38%) +Edy]07)}, pressed in a global inertial systeBxyz Thus the element has

24 nodal coordinates given by the vector

where the small nodal displacements and rotations are given by
u = (up?vp7wpﬂq))rz)¢)F/)?¢E7uqﬂ\,qﬂvvq’¢)(2?¢q7¢g) (16)
The location of an arbitrary poimtin the beam is determined by

If we denote the mass moment of inertia along the principal axes the interpolation
of an infinitesimal small section bgly, dly anddl, then the fol-

lowing integral r=S(xYy,z)e (29)

=
/S_ (5 xdlxdx + 3ydlydy + 86 ,dl ), (17) whereSis the element shape function asis the vector of nodal
0 coordinates. The shape function is obtained using polynomial

which are in this case cubic kand linear iny andz, where the
results in a mass matrix with the contributions of the rotary iner- x-direction is initially along the central axis of the beam. The

tia of the cross-section. If the principal dimension of the cross- element shape function matris now defined as
section igh, then this contribution is of the ordén/1)2 compared
with the entries of the regular mass mat{13).

S=1[S1,Sl, 51, S, Sl Sl , S, Sl (20)

3 ANC beam wherel is the 3 by 3 identity matrix and the polynomials
In this section a two node spatial beam element accord-

ing to the absolute nodal coordinate formulation will be pre-

— 2 3 _ 2 3
sented. Here we follow mainly the description by Shabana and S =1-387+28%  S$=1(8-28°+8),
Yakoub[8, 9] S=1(1-8)n, S =1(1-8),
ing S=32- 28, S=I(-81E =)
A distinguishing point in the ANC formulation is the usage - ’ - ),
of slope vectors to describe the orientation of the cross-section in S =1én, S =18¢,

the nodes, where the slope vectors are not necessarily unit vec-
tors. This leaves more room for the cross-section to deform and with the non-dimensional coordinates
change shape. Itis expect@]9] that this type of description, to-
gether with a three-dimensional continuum mechanics approach,
leads to more accurate results. A well-known major advantage of
this description is that it leads to a constant mass matrix. Unfor-
tunately, the expressions for the elastic forces are more complex.andl the initial length of the beam. The initial undeformed con-
figuration where the beam central axis coincides with the globa

E:X/L n:y/lﬂ Z:Z/|7 (22)
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X-axis is

r0=sé (23)
with the initial nodal coordinates® as
60:[0T7e3(—7e;/r7e;—5|e;(r7e3(—7e;/r7e;—]-r (24)

with fixed triads(ey, ey, e,) of the global inertial syster®xyz
Indeed, substitution o&® in (23) leads to the identities® =

xy.2)".

3.1 Elastic Forces, continuum approach

The elastic forces are derived from a general continuum me-

chanics approach. We start from the displacememtan arbi-
trary point of the beam expressed in the gloBalyzcoordinate
system as given by

u=r-—rpo. (25)

Under the assumption of a linear elastic isotropic material the
stress vectoo is related to the strain vector as

o = Eg, (30)
where the non-zero elastic coefficie@sre given by
1-v v \Y
2G .-
ij =75~ v 1-v v ,h,1=1,...,3,
=2\ v v 1-v (31)
B =G, k=4,...,6.

Equating the virtual work of the elastic forces with the virtual
work of the external nodal force3 as in

/V 0" dedv = QT de, 32)

yields the elastic nodal forces expressed in terms of the nod:
displacements

Q= / (9¢/0e)TEedV (33)
Vv

Substitution of these displacements in the Green—Lagrange strainThe tangent stiffness matrix is obtained by linearizing the elasti

tensor

1 .
si,-:é(uiﬁj+uj7i+uk,iuk.j), ij,k=x...,z (26)

where partial derivatives are denoted gy, = 0uy/0dy.. ., leads
to the strain tensor expressed in the absolute coordimzdesl
their derivatives as

1 1 rrx—1 Tr,TXr,y r;rﬁZ
&ij = 5 (Tkifkj —6ij) = 5 yfy=1 Iyfe
symm. ryr,—1

(27)
From this we identify 6 independent strain components which
we write in the form of a strain vectarsuch that the vector dot
product%oTs represents the elastic energy. This strain vector is
now

&1=3 (rlrx—1), e2= 3 (rLrvy— 1),e3=13 (rir,—1),
g4=rlry, Es=rLr,, g6 =TT
(28)
The virtual work of the elastic forces now can be written as
SW — / o' SeqV. (29)
\Y
5

forces with respect to the nodal displacements
K — / (9€/06)TE(0e /de)V + / (0%/0) Ee v (34)
V \%

The last matrix is the geometric stiffness matrix, which evaluatec
in the undeformed and unstressed geometry is identical to zer
whereas the first matrix is the linear stiffness matrix

K — / (9e/0€)TE (0€ /de) V. (35)
JV

Finally, we will evaluate the linear stiffness matrix in the unde-

formed geometry. With the notion that the slopes in the initially

undeformed geometry are identical to the global directions
(rx/0e)° =6,  (9ry/0e)°=g,  (9r,/0e)°=¢e, (36)

the partial derivatives of the strain vector evaluated at this initial

undeformed configuration become

S1.x
Sy
S3;
Sy +Sox
S, +Say
S3x+S1z

(0g/0e)° = (37)
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Substitution into 85) and evaluating the integral over the volume
of the beam leads to the desired linear stiffness matrix

KO = /V (9¢/0e)°T E(9e /de)°dV. (38)

3.2 Inertia forces

The absolute nodal coordinate formulation leads to inertia

with the straing; = (&x, &y, €2, yz) and the elasticity coefficients
E;j asin (31), the transverse shear deformation

1 1
We= 51 [ (GAKE, +GAk) ot (43)

and the torsion and bending

forces which can be expressed as the product of a constant mass

matrix times the accelerations of the nodal coordinates. There
are no inertia forces which are quadratic in the velocities. The
constant mass matrix is defined as

M = /V oSTsav. (39)

The above integral defines a mass matrix which only depends on

the mass distribution and the dimensions of the beam and, under

the assumption of a consistent shape function, captures all linear
and rotary inertia effects.

3.3 Elastic forces, elastic line approach

As an alternative to the general continuum approfjh
where we suspect the forces to show shear locking, we propose
to derive the elastic forces for the beam from an elastic line con-
cept. For the interpolation of points of the beam we will still use
the same cubic/linear form as in the continuum appr¢&eh20)
but all deformations, extension, shear, torsion, and bending, will
be evaluated on the elastic line.

First we define the slopes on the elastic line as

rx=r x(x,0,0), ry="ry(x,0,0), rz=r ,(x,0,0). (40)

With these slopes we define 9 generalized deformations

ex=3(irx—1), &=3(ryry—1),&=3(rjr;—1),

T T T
Yyz="Tylz Yxy = I'x Ty, Yxz="Txlz

_ LTy Ty _ Ty _ Ty
Kx_j(rzryfryrz), Ky =TTy, Kz=—Tyly

(41)
where a prime denotes a derivative with respect.tdhe first
four, &y, &y, £, andyy, represent the extension of the beam and the
deformation of the cross-sectiopy andyy; are the transverse
shear deformationsy is the torsion, andy andk; are the bend-
ing deformations.

The strain energyV® of the beam is the sum of the strain
energies of the extension and deformation of the cross-section

1 0 _ .
V\4:§|/O (AEiEijEj)dE, i,j=1,....4, (42)

1 1 Lt
W= [srdide, Wo= 51 [ (G +ELC)E, (44)

makingWe€ =W +Ws +W +W,. With the cubic/linear interpo-
lation on the elastic line according t&Q) and ¢0) we suspect
that adding the contribution of the shear deformation accordin
to (43) will result in shear locking. Therefore we propose to add
the shear stiffness by means of the Hellinger—Reissner princ
ple[10]. In this approach we are free to define both the displace
ments field and the stress distribution. This can be very advant:
geous if the stress distribution, usually from an engineering poin
of view, is known beforehand. In the case of pure shear defor
mation we assume that the shear forces will vary linearly ovel
the elastic line of the element. The strain energy of the shee
deformation is the sum of the shear in thand thez direction.
We start with shear forces in tlzadirection, and assume a linear
shear stress distribution according to,

Txz = NT*, (45)
with the shape function
N=((1-8),%), (46)
and the nodal shear stresses
T =R (47)

The strain energy according to he Hellinger—Reissner principle
is

W, = /V (TIszz —We(Txz))aV, (48)

whereW is the complementary shear stress energy according t

1

We(Txz) = ﬁTIZTXL

(49)
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with shear factok, to account for the fact that the shear stress The strain energy for the beam with the adapted shear stiffnes
is not uniformly distributed over the cross-sectidd]. Substi- according to the Hellinger—Reissner principle now becomes
tution of the linear shear stress distribution frofd) results in a

strain energy

=W +W, +W + W, (58)
' 1
W = / TNy — —=— T TNTNT")QV, 50
5z v( ¥z 2Gk, ) 0) The linear stiffness matrix is found in the same manner as ir
Section3.1. The elastic forces are determined from equating the
with the shear strain distributiop, according to 41). For this variation of the elastic energy with the virtual work of the nodal
shear strain energy we seek a stationary value with respect to theforces
generalized shear stress parametérsesulting in
& — (OW® /de)de = Q°Tde (59)

6W§‘Z:/61*T(NTyXZ—G—LNTNI )V =0.  (51)
\%
Then the linear stiffness matrix is found by linearizing the elastic

forces with respect to the nodal coordinates at the undeforme

Integration over the volume yields s X
reference configuration

WXZ_ FZT* - 0 (52)
= (0Q°/0e)°. (60)
with the energy terms
Because the elastic energy is a direct sum of contributions du
to extension, shear, torsion, and bending the same holds for tt
Wi(€) = Al / Tiale (33) stiffness matrix. The individual contributions to the stiffness ma-

trix are, for the extension
which are in general non-linear functions in the nodal coordi-

natese and the constant coefficient matrix 1 oTe — 0 o
Ki=1 [ (A TE € ) 1i=1.d (6
AR e
for the shear deformation
From this we can solve for the generalized shear stress parame- . .
ters Ks= (ny,e)o Sy(ny,e)o + (sze)o Sz(sz,e)o7 (62)

5 = S,W,yy, S,=F1= GTII(Z (‘21 _i> . (55) for the torsion

Substitution in the original shear energy function yields the shear K= / (K, e KX e)o)dE, (63)
energy according to the Hellinger—Reissner principle

.1+ and for the bending
Wsz: EWXZSZWXZ' (56)
! oT 0 ! oT 0

The shear strain energy for shear forces inytiuirections W, Kb:'/o (Ely(Kye)™ (Kye) )dEH/O (Elz(Kze)™ (Kze))dE.

can be derived in the same manner resulting in a total shear strain (64)

energy function of The partial derivatives of the generalized strains with respect t
the nodal coordinates in the initially undeformed configuration

1 1 T take on even simpler forms as (86) and (37) since the only
We' = S Wiy SWoy £ 5 WS W (57) variable is now the elastic line coordinate
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4 Results and Discussion Mode FEM ANCcon. ANCel. unit
In this section the three different element formulations will

be compared. Since every element uses a different set of nodal 2 bending (symm.) ~ 10.953  12.699  10.954,/ =y

coordinates, the comparison will be made by means of an eigen- 2 bending (asymm.) 50.134 696.14 50.200. / EL

frequency analysis of the free vibration of a simply supported mi®

beam and of a cantilever beam, both modelled by one element. torsion 1.5908 1.7319 1.5908 */%
The beam has an undeformed lengtnd a uniform square Lo EA
cross-section of width and height= 0.021. The Poisson ratio longitudinall 1.6408 1.5724 1.5724 ml
of the material is» = 0.3. The shear factors for a square cross-  longitudinal2"d - 5.0546 5.0548 %’?
section areky = k; = 10(1+v)/(12+ 11v) [11]. The torsional longitudinal3® B 11,585 11.586 EA

stiffness is given byx = Gkl p, with G=E/[2(1+V)], the shear
distribution factorky = 0.8436[14], and the polar area moment - 107.42 198.03 \/j
of inertialp = Iy + 1.

The first case is a simply supported beam. The boundary
conditions for the FEM beam are straightforward. Both nodes — 240.24 480.40 Ef
are supported in thgzplane plus the horizontal displacement in
nodep and the rotation along the central axis are restricted. This
leaves 6 degrees of freedom, namely

m
=

10 modes -

3]

Table 1. Eigenfrequencies for a simply supported beam.

. The second case is a cantilever beam. The boundary conc
U = (9J,62,u% 0,97, 07). (65) tions for the FEM beam are straightforward. Tipaode is fully
suppressed in both displacement and orientation anglithieee.
For the ANC formulated element we apply the same boundary This leaves 6 degrees of freedom, namely
conditions, where the rotation along the central axis in npde

is §uppressepd by fixing thg displacement of the skﬁ)m.the U = (U9, VA, A, 09, 69, bF). 67)
y-direction,vz. The remaining degrees of freedom, 18 in total, X z
are
For the ANC element we first suppress the displacements of th
ut = (R, V&, wg, u{,’,vf,’,wf,’, ub wh, 66 p node. Then to suppress the rotation of the cross-sectipwat
ud, ug, v, Wi, U;(},V?,W?, ug, v, wd), (66) suppress the displacement of the slobin thex andzdirection,

uf andwd, and the slope? in thex direction,uf. The remaining

where we the displacements of a slope vectbrare denoted ~ degrees of freedom, 18 in total, are

by (uf,v{,w§) and so forth. The results of this analysis are

presented in Tabléd. _The first observation that we make_is ut — (u)’f,v)’?,wf,vﬁ,vf,wf,

that the ANC formulation yields 12 further eigenfrequencies, U9 v, U8, wl, U9, v, ug v, wl). (68)

of which 10 are local modes with a high frequency. The first

bending mode in the continuum ANC is too high by a factor

V/(1—-v)/(1+Vv)/(1—2v) ~ 1.16, because the anticlastic de- ~ The results of this analysis are presented in Table For this
formation of the cross-section cannot be described by the con- case, the results for the longitudinal and torsion eigenfrequencie
tinuum displacement field. Note that this result is also present in are as in the simple supported case. For bending, we see the sa
the dynamic response of the mid-point deflection of the pendu- kind of phenomena as before, especially the shear locking in th
lum beam from Fig8in [9]. The torsional eigenfrequencyisalso ~ second bending mode for the continuum ANC. The elastic line
too high, because the factkg is not included. The continuum ANC still gives rather high values for the bending eigenvalues.
ANC gives a large value for the second bending mode, because This can be attributed to the difficulty in prescribing the condition
this mode is coupled to a shearing deformation, a phenomenon Of zero rotation of the cross-section for the clamped end. Becaus
that is referred to as shear locking. The modified ANC formu- the Hellinger-Reissner formulation relaxes the rigidity against
lation gives a far more realistic value. The exact values of the shear deformation, shear can still occur at the ends of the bea
factors for an Euler-Bernoulli beam aré and4m®. The ANC for asymmetric bending; the shear is only small in an averagy
gives good approximations for the longitudinal eigenfrequencies, sense. The acurate numerical factors for the bending modes
because the interpolation is cubic instead of linear. Compare the an Euler—Bernoulli beam are 3.5156 and 22.0336.

numerical factors with the exact factors that follow from a slen-

der rod theory(2k— 1)1t/2, k=1,2,3,....
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Mode FEM ANCcon. ANCel. unit mechanisms’, iComputer aid_ed analysis and optim_ization
- X = of mechanical system dynamiétaug, E. J. (ed.), Springer-
2 bendingl® 3.5316  5.1860 4.4654 /=5 Verlag, Berlin, 1984, pp.381—400.
2 bending2™ 34.760 361.69 59 655 % [5] Jonker, J. B., and .Meuaard,. J. P, ‘_SPACAR_—Computer
m program for dynamic analysis of flexible spatial mecha-
2 bending/shearing - 980.38 791.50 % nisms and manipulators’, iklultibody Systems Handbgok
torsion 15908 17319 15908 % fggl_elhdlr:e;n, W. O. (ed.), Springer-Verlag, Berlin, 1990, pp.
longitudinal 1.6408 1.5724 1.5724 %’? [6] Meijaard, J. P., ‘Validation of flexible beam elements in dy-
namics programs’Nonlinear Dynamic®, 1996, pp. 21—
longitudinal2 - 50546 50548 ,/EA ag o Nonl ynami PP
longitudinal3' - 11.585 11.586 Eﬁf [7] Shabana, A. A., ‘Flexible multibody dynamics: review of
EA past and recent developmentslultibody System Dynam-
- 107.43  198.06 /%y ics 1, 1997, pp.189-222.

8 modes - [8] Shabana, A. A., and Yakoub, R. A., ‘Three Dimensional
absolute nodal coordinate formulation for beam elements
- 240.24 480.40 ‘ml theory’, ASME Journal of Mechanical Desigt?3 2001,

Table 2. Eigenfrequencies for a cantilever beam. pp. 606-613. . .
[9] Yakoub, R. A., and Shabana, A. A., ‘Three Dimensional

absolute nodal coordinate formulation for beam elements

m
2

5 Conclusion implementation and applicationsASME Journal of Me-
In this paper some formulations for a flexible spatial beam chanical Desigrl23 2001, pp. 614-621.
have been compared. In general, the FEM formulation gives [10] Reissner, E., ‘On a variational theorem for finite elastic de-
good results for the linearized case. Some shortcomings in the formations’,Journal of Mathematics and Physi8g, 1953,
spatial beam formulation given 9] were found, especially that pp. 129-135.
it yielded too large torsional and flexural rigidities and that shear [11] Cowper, G. R., ‘The shear coefficient in Timoshenko'’s
locking effectively suppressed the asymmetric bending mode. beam theory’, ASME Journal of Applied Mechanic3,
An elastic line ANC formulation, along similar lines as [i8] 1966, pp.335-340.
has been proposed. This formulation yielded better torsional and [12] Przemieniecki, J. STheory of Matrix Structural Analysjs
flexural rigidities. The shear locking of the asymmetric bending McGraw-Hill, New York, 1968.
mode could be suppressed by the aid of the application of the [13] Argyris, J. H., ‘Continua and discontunia, an apeof re-
Hellinger—Reissner principle; the problem of the proper imposi- cent developments of the matrix displacement methods’, ir
tion of clamped boundary conditions remains. Matrix Methods in Structural Mechanics. S. Przemien-
As a direction of future research, it is desirable to develop niecki, et al. (eds.), Wright-Patterson Air Force Base, Day-
the spatial beam ANC formulation based on the elastic line con- ton, Ohio, 1966, pp. 11-189.
cept further. [14] Timoshenko, S. P., and Goodier, J. Rheory of Elasticity

McGraw-Hill, New York, 1987.
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