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Abstract. In this article it is shown how non-holonomic constraints can be included in the formula-
tion of the dynamic equations of flexible multibody systems. The equations are given in state space
form with the degrees of freedom, their derivatives and the kinematic coordinates as state variables,
which circumvents the use of Lagrangian multipliers. With these independent state variables for the
system the derivation of the linearized equations of motion is straightforward. The incorporation of
the method in a finite element based program for flexible multibody systems is discussed. The method
is illustrated by three examples, which show, among other things, how the linearized equations can
be used to analyse the stability of a nominal steady motion.
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1. Introduction

The motion of mechanical systems having rolling contact, as in road vehicles and
track-guided vehicles, can be investigated in an approximate way by a mechanical
model having non-holonomic constraints. These constraints express the conditions
of vanishing slips at the contact points. A mechanical system with non-holonomic
constraints is called non-holonomic. Whereas the dynamics of mechanical systems
with ideal holonomic constraints was almost completed by the publication of Lag-
range’s monumental Méchanique analitique [1], Hertz [2] was the first to describe
and name systems with non-holonomic constraints. Although the principle of min-
imal action fails for these systems, the principle of virtual power and the principle
of D’Alembert can be applied. In their excellent book [3] Neı̆mark and Fufaev
treat the kinematics and dynamics of non-holonomic mechanical systems in great
detail. They illustrate the presented theory with worked-out examples and give an
elaborate reference list with 513 items. The inclusion of non-holonomic constraints
in formalisms for multibody systems has been considered by Kreuzer [4] and
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Nikravesh [5], and by such they made the first step from small-scale analytically
manipulated problems to general purpose software.

In this article we present a procedure for including non-holonomic constraints
in the formulation of the dynamical equations of flexible multibody systems. The
method is incorporated in a finite element based program. The dynamical equations
are given for a set of minimal coordinates rather than with the aid of Lagrangian
multipliers. The configuration is described by the degrees of freedom and the gen-
eralized kinematic coordinates, as many as there are non-holonomic constraints.
The velocities of the system are described by the time derivatives of the degrees of
freedom. The dynamical equations in a state space form comprise the equations of
motion and the kinematic differential equations, which give the time derivatives of
the configuration coordinates.

The derivation of the linearized equations from the dynamical equations is
rather straightforward. These linearized equations can be used to analyse small
vibrations superimposed on a general rigid body motion as described in [6]. Here
we will extend that idea and use the linearized equations to analyse the stability of
a nominal steady motion, as will be shown in some examples.

2. Dynamics of Non-Holonomic Flexible Multibody Systems

2.1. FINITE ELEMENT MODELLING

Multibody systems with deformable bodies may well be modelled by finite ele-
ments. This approach was initiated in the seventies by Besseling [7] and has been
further developed among others by Van der Werff [8], Jonker [9], Géradin and
Cardona [10, 11], and authors [12, 13]. The distinguishing point in the finite ele-
ment approach as it has been developed in Delft and implemented in the program
SPACAR [14] is the specification of independent deformation modes of the finite
elements, the so-called generalized deformations or generalized strains. These are
the algebraic analogue to the continuous field description of deformations. Rigid
body motions are displacements for which the generalized strains are zero. If the
specification of the generalized strains remains valid for arbitrarily large transla-
tions and rotations, rigid multibody systems such as mechanisms and machines
can be analysed by setting all generalized strains to zero. These strain equations
are now the constraint equations which express rigidity. Deformable bodies are
handled by allowing non-zero strains and specifying constitutive equations for the
generalized stresses, which are the duals of the generalized strains.

Instead of imposing constraint equations for the interconnection of bodies,
which is a widespread approach in multibody system dynamics formalisms, per-
manent contact of elements is achieved by letting them have nodal points in
common. With the help of a rather limited number of element types it is possible
to model a wide class of systems. Typical types of elements are beam, truss and
hinge elements, while more specialized elements can be used to model joint con-
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nections, transmissions of motion [18], and rolling contact as in road vehicles and
track-guided vehicles [19, 20].

2.2. HOLONOMIC AND NON-HOLONOMIC CONSTRAINTS

In a finite element description of a multibody system the configuration is described
by a number of nodal points with coordinates x and a number of elements with
generalized deformations or generalized strains ε. The nodal coordinates can be
absolute coordinates of the position or parameters that describe the orientation of
the nodes, such as Euler parameters. The generalized deformations depend on the
nodal coordinates and can be expressed as

ε = D(x). (1)

Usually holonomic constraints are imposed on some generalized deformations and
nodal coordinates. For instance, the conditions for rigidity of element e are εe =
De(xe) = 0. If the holonomic constraints are consistent, the coordinates can locally
be expressed as functions of the generalized coordinates q by means of a transfer
function F as

x = F(q, t). (2)

The prescribed motions, or rheonomic constraints, which are known explicit func-
tions of time, are represented here by the time t . The generalized coordinates can
be chosen from components of the nodal coordinate vector x and the generalized
deformation vector ε. Generally the transfer function cannot be calculated expli-
citly, but has to be determined by solving the constraint equations numerically in an
iterative way. Partial derivatives are calculated by means of implicit differentiation.

The non-holonomic constraints, as may arise from elements having idealized
rolling contact, can be expressed in terms of slips that are zero [19]. Such a slip
is usually defined as some relative velocity between the two bodies in the contact
area, and is therefore linear in the velocities. The case of non-linear non-holonomic
constraints in mechanical systems has been given a lot of attention in the past [3]
but only led to one example system as originally given by Appell in 1911. Hence
we will consider only linear non-holonomic constraints expressed in terms of zero
slip functions. For instance, if element e has non-slipping contacts, it has to satisfy
the constraints se = Ve(xe)ẋe = 0. Assembly of all conditions of zero slip for the
system results in the non-holonomic constraints

s = V(x)ẋ = 0. (3)

Owing to these constraints, the generalized velocities q̇ are now dependent. This
dependency is expressed by a splitting of the generalized coordinates q into the
degrees of freedom qd and the generalized kinematic coordinates qk. The velocities
of the degrees of freedom q̇d are now the independent speeds, whereas the config-
uration of the system is described by qd and qk. The velocities of the system can



110 A.L. SCHWAB AND J.P. MEIJAARD

now be expressed in terms of the first-order transfer function H times the velocities
of the degrees of freedom and a term representing the prescribed motion, as in

ẋ = H(q, t)q̇d + v(q, t). (4)

The expressions for the first-order transfer function and the prescribed motion
terms are found by differentation of (2) and splitting of terms as in

ẋ = F,qd q̇d + F,qk q̇k + F,t , (5)

where partial derivatives are denoted by a subscript comma followed by the
variable. Substitution in the non-holonomic constraints (3) results in

V[F,qd q̇d + F,qk q̇k + F,t] = 0. (6)

From these equations, as many as there are kinematic coordinates qk, the velocities
q̇k can be solved as

q̇k = −(VF,qk )−1[VF,qd q̇d + VF,t]. (7)

Substitution of this result in (5) and comparing terms with (4) results in the first-
order transfer function

H = [I − F,qk (VF,qk )−1V]F,qd , (8)

and the velocities v, representing the prescribed motion, as

v = [I − F,qk (VF,qk )−1V]F,t . (9)

The expresion between square brackets that is common to (8) and (9) is a projection
operator to the space Vẋ = 0 in a direction that is parallel to the space spanned by
the columns of F,qk . In this expression we identify the use of the inverse of the
Jacobian of the non-holonomic constraints with respect to the generalized kin-
ematic coordinates

VF,qk . (10)

If this Jacobian is singular, we have to choose another set of generalized kinematic
coordinates and consequently another set of degrees of freedom to describe the
system uniquely. Having taken into account all constraints we can define the state
of the system at a time t as

(q̇d,qd,qk). (11)

Next we will derive the dynamical equations of the system, or, in other words, the
time derivative of the state of the system.
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2.3. EQUATIONS OF MOTION

The derivative of the first part of the state vector, q̇d , with respect to time follows
from the equations of motion of the system. The equations of motion for the con-
straint multibody system will be derived from the principle of virtual power and the
principle of D’Alembert. This method can be traced back to Lagrange who by his
monumental Méchanique analitique [1] became the founder of the study of motion
of systems of bodies. The inclusion of non-holonomic constraints was not foreseen
by Lagrange. Hertz [2] was the first to describe and this type of constraints.

First, for each node and element in the system, we determine a mass matrix Me

and a force vector fe, which give a contribution to the virtual power of

δẋeT (fe − Meẍe). (12)

The virtual power equation of the system is obtained by assembling the contribu-
tion of all elements and nodes in a global mass matrix M and a global force vector
f, which results in

δẋT [f(ẋ, x, t) − M(x)ẍ] = 0. (13)

Here, δẋ are kinematically admissible virtual velocities, which satisfy all instant-
aneous kinematic constraints. They follow directly from (4) as

δẋ = Hδq̇d. (14)

The coordinate accelerations are obtained by differentation of the velocities (4),
resulting in

ẍ = H(q, t)q̈d + g(q̇,q, t), (15)

where we have collected all convective and prescribed accelerations in g. These
accelerations, which depend only on the state of the system, are given by

g = H,qq̇q̇d + H,t q̇d + v,qq̇ + v,t . (16)

Substitution of the acceleration (15) in the virtual power equation (13) yields the
reduced equations of motion

M̄(qd,qk, t)q̈d = f̄(q̇d,qd,qk, t), (17)

with the reduced global mass matrix,

M̄ = HT MH, (18)

and the reduced global force vector,

f̄ = HT [f − Mg]. (19)
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The time derivative of the second part of the state vector, qd , is obviously the
first part of the state vector itself. The time derivative of the generalized kinematic
coordinates, qk, as found in (7), can in general be expressed as

q̇k = A(q, t)q̇d + b(q, t), (20)

where the matrix A and the velocity vector b, which represents the velocities of the
rheonomic constraints, are given by

A = −(VF,qk )−1VF,qd and b = −(VF,qk )−1VF,t . (21)

Note in both expressions the presence of the inverse of the Jacobian (10).
We summarize by writing down the time derivative of the state vector or the

state equations as

d

dt


 q̇d

qd

qk


 =


 M̄−1f̄

q̇d

Aq̇d + b


 . (22)

2.4. LINEARIZED EQUATIONS OF MOTION

The study of small vibrations and stability of conservative non-holonomic systems
near equilibrium states has lead to some controversy in the past. Whittaker in his
Analytical Dynamics [15, section 90] concluded that for such cases ‘the difference
between holonomic and non-holonomic systems is unimportant’ and that the vi-
bration motion of a given non-holonomic system with n independent coordinates
and m non-holonomic constraints is the same as that of a certain holonomic system
with n − m degrees of freedom. Bottema [16] showed that this was incorrect, and
pointed out that the characteristic determinant of such a non-holonomic system is
asymmetric and that the corresponding characteristic equation possesses as many
vanishing roots as there are non-holonomic constraints. However, besides a man-
ifold of equilibrium states, some non-holonomic systems also possess a manifold
of steady motion. Due to these motions some vanishing roots may get non-zero
values.

To describe the small vibrations or motions with respect to a nominal steady
motion we have to linearize the dynamical equations (22). Whereas in the nom-
inal motion the rolling contacts satisfy the non-holonomic zero-slip conditions,
the small vibrations may violate some of these conditions. Small slips are usually
allowed in contact models for road and railway vehicles. For the description of the
small motions we will use the dynamic degrees of freedom qd . The linearization
is done in the nominal reference state which is characterized by (q̇d,qd,qk) =
(0, 0,qk

0), where qk
0 stands for the kinematic coordinates in the reference state.

Linearization of the first part of the state equations (22), the reduced equations of
motion (17), results in

M̄�q̈d + C̄�q̇d + K̄d�qd + K̄k�qk = −fd, (23)
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where the prefix � denotes a small increment. M̄ is the reduced mass matrix as
in (18), C̄ is the velocity sensitivity matrix which contains terms resulting from
damping and gyroscopic effects, K̄d and K̄k are the total stiffness matrices. Note the
extra term K̄k�qk which is due to the variation of the kinematic coordinates qk. The
forcing, −fd , on right-hand side of the equations results from the nominal steady
motion solution. In order to maintain the prescribed values for the dynamic degrees
of freedom and the kinematic coordinates during this motion, usually additional
forces have to be introduced in the right-hand side of the reduced equations of
motion (17). The sum of the reduced forces has to be zero, as in

HT [f − Mg] + fd = 0, (24)

from which the forces fd are found.
The matrices of the linearized equations are determined in the following way.

First for all elements and nodes the contribution to the global stiffness matrix K
and the global velocity matrix C are determined as

Ce = −(fe),ẋe and Ke = (Meẍe − fe),xe . (25)

These global matrices having been determined, the matrices in the linearized
equations are given by

C̄ = HT CH + HT Mg,q̇d ,

K̄ = [K̄d K̄k] = HT KF,q + HT
,q[Mẍ − f] + HT [Mg,q + Cv,q]. (26)

Note that all matrices are generally a function of time due to the non-linear steady
motion. Linearization of the second part of Equation (22) is trivial. The last part,
the linearization of the rate of the generalized kinematic coordinates is derived
from (20) as

�q̇k = A(q, t)�q̇d + Bd(q, t)�qd + Bk(q, t)�qk. (27)

The B-matrices express the sensitivity of the generalized kinematic velocities with
respect to the generalized coordinates, and are given by

Bd(q, t) = b,qd and Bk(q, t) = b,qk (28)

We conclude by summarizing the linearization of the state equations in matrix
vector form as

 M̄ 0 0
0 I 0
0 0 I





 �q̈d

�q̇d

�q̇k


 +


 C̄ K̄d K̄k

−I 0 0
−A −Bd −Bk





 �q̇d

�qd

�qk


 =


 −f̄d

0
0


 . (29)

The stability of a system in steady motion can be investigated by the homogeneous
linearized state equation from (29). Under the usual assumption of an exponential
motion with respect to time for the small variations (�q̇d,�qd,�qk)T we end
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Figure 1. Swivel wheel.

up with a characteristic equation for the unknown exponents. The stability of an
equilibrium state, the case of zero steady motion as investigated by Bottema [16],
corresponds to vanishing B-matrices. Because there is now a manifold of equilibria
with the same dimension as the number of non-holonomic constraints, there are as
many vanishing roots as there are non-holonomic constraints. These roots entail
eigenvectors with �qk the individual unit vectors, �qd = −(K̄d)−1K̄k�qk and
�q̇d = 0.

3. Examples

3.1. SWIVEL WHEEL SHIMMY

To illustrate the general method for the derivation of the state equations of a non-
holonomic system and their linearization we shall revisit the shimmy problem of
an aircraft landing gear as treated by Den Hartog [17]. He simplified the problem in
order to show the principal mechanism responsible for the shimmy phenomenon.
The mass and stiffness of the airplane are assumed large with respect to those of
the swivel landing wheel, so that the attachment point of the swivel axis to the
airplane may be assumed to move forward at a constant speed. The tire is assumed
to be rigid and the inertia along the axis of rotation of the wheel is not taken into
account. Then in Figure 1, which is a plan view of the shimmying wheel seen
from above, point C is the point where the wheel strut is built into the airplane.
Point B is the bottom point of the strut; normally B is right under C, but while
shimmying the strut is assumed to flex sideways through distance u at a stiffness k.
The wheel is behind B with angle φ, the shimmy angle, which is zero for normal
ideal operation. A is the centre of the wheel, and G is the centre of gravity of the
combined landing gear. The finite element model consists of a two-dimensional
wheel element [19] attached in point A to a rigid beam. The wheel has zero lateral
slip which is the non-holonomic condition in the system. The beam is connected
in point B to a cylindrical bearing element. The bearing is rigid in the longitudinal
and flexible in the lateral and rotational direction and the generalized deformations
are denoted by u and φ. The lateral stiffness is k while the rotational stiffness is
assumed to be zero. The bearing is moved forward with a constant speed of v. The
generalized coordinates of the system are given by q = (u, φ). The zero lateral slip
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condition on the wheel reduces the coordinates to the degree of freedom qd = (u)

and the kinematic coordinate qk = (φ). The steady state undeformed motion is
characterized by (u̇, u, φ) = (0, 0, 0). With the variations �q̇d = �u̇, �qd = �u

and �qk = �φ, the coefficients of the linearized state derivatives according to (29)
are

M̄ = m

(
a2 + r2

l2

)
,

C̄ = m

(
ab − r2

l2

)
v

l
, A = 1

l
,

K̄d = k, Bd = 0,

K̄k = −m

(
ab − r2

l2

)
v2

l
, Bk = −v

l
,

f̄ = 0. (30)

These coefficients are usually numerically calculated by the program but we
present them here in an analytical form so we can compare them with the approach
as presented by Den Hartog [17]. His ad hoc analysis leads to an eigenvalue prob-
lem. The systematically derived linearized state derivatives (30) lead to the same
eigenvalue problem and consequently to the same prediction of unstable shimmy
behaviour.

To investigate the shimmy motion we start with the usual assumption of an
exponential motion for the small variations �q of the form �q0 exp(λt). The char-
acteristic equation of the eigenvalue problem from (29) with the coefficients from
(30) is

λ3 + (1 + µ)ωλ2 + ω2
nλ + ωω2

n = 0, (31)

with the mass distribution factor µ = (ab − r2)/(a2 + r2), the driving frequency
ω = v/l and the natural frequency ωn = √

kl2/(m(a2 + r2)). A neccessary and
sufficient condition for asymptotic stability is given by the requirement that all
roots of (31) have negative real parts. Application of Hurwitz’s theorem on the
characteristic equation (31) yields

ω > 0 and µ > 0. (32)

In other words, the motion is stable if the driving speed v is positive and the centre
of mass is positioned such that a(l − a) > r2. The latter corresponds to a region of
±√

(l/2)2 − r2 around the midpoint a = l/2. For the critical case, where a(l−a) =
r2, there is one real eigenvalue λ1 = −ω describing the non-oscillating decaying
motion and a pair of conjugated imaginary values λ2,3 = ±ωni which describe the
undamped oscillatory solution. This critical case corresponds to a mass distribution
where point B is the centre of percussion or in other words, the lateral contact force
in A has no influence on the lateral spring force in B.
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Figure 2. Root loci of the eigenvalues λ for the swivel wheel with moment of inertia
I = 0.21ml2 in the centre of mass position range of 0 ≤ a/l ≤ 1 and eigenmode for
the undamped oscillatory case a/l = 0.3, with driving frequency ω = v/l and undamped
eigenfrequency ω0 = √

k/(0.3m).

The general solution for the eigenvalues can be found by solving the charac-
teristic equation (31). However, the general solution of a cubic equation leads to
lengthy expressions and gives little insight in the nature of the solution. To illustrate
the behaviour of the system at the non-critical cases, consider a swivel wheel with
mass moment of inertia I = 0.21ml2. The motion is stable if the centre of mass
position a is between 0.3l and 0.7l. The root loci for this example in range of
0 ≤ a/l ≤ 1 are shown in Figure 2 together with the eigenmode for the undamped
oscillatory case a/l = 0.3. The lateral displacement of the attachment point B,
u, and the lateral displacement of the centre of the wheel A, denoted by w, are
illustrated in the figure by the vertical projection of the rotating arrows. Note that
the lateral displacements are not in phase. The phase angle, ψ , and the amplitude
ratio, �w0/�u0, are for given eigenvalue λ = γ0 + ω0i uniquely determined by
the kinematic rate equation (27) and read

tan ψ = − ω0

ω + γ0
and

�w0

�u0
= ω√

(ω + γ0)2 + ω2
0

. (33)

The wheel centre and the attachment point are always out of phase, even in the
undamped oscillatory case where γ0 = 0.
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Figure 3. Disk rolling on a horizontal plane.

Figure 4. Root loci of the eigenvalues λ for the rectilinear motion of a rolling disk on a
horizontal plane in the speed range of 0 ≤ v ≤ 1.

3.2. THE ROLLING DISK

One of the simplest and most intriguing examples of a spatial non-holonomic sys-
tem is a disk rolling without slip on a horizontal plane. From experience we know
that such an object, if given enough initial speed, shows stable motion which is
quite different from the behaviour at low speed. We shall investigate the stability
of the rectilinear motion with the help of the spatial wheel element [19]. The rolling
of a disk on a horizontal plane has been studied in detail, for example by Neı̆mark
and Fufaev [3], and we shall compare the results. The finite element model of the
system consists of a wheel element, rolling on a horizontal plane z = 0, and three
orthogonal hinges attached to the wheel centre to describe the three degrees of free-
dom: pitch, roll and yaw (Figure 3). The two kinematic coordinates are the x and y

position of the point of contact in the plane. We assume that the infinitesimally thin
disk has uniformly distributed unit mass m, unit radius r and a unit gravitational
force field g in the downward direction.

The stability of the rectilinear motion at longitudinal speed v is investigated by
the determination of the eigenvalues of the linearized equations of motion as de-
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Figure 5. Path of a rolling disk on a horizontal plane at subcritical speed for a time period of
87 units, with an initial forward velocity 0.4116 and a roll velocity −0.01.

scribed in Section 2.4 by Equation (29). The dimension of the eigenvalue problem
is eight; namely two times the number of degrees of freedom plus the number of
kinematic coordinates. Beforehand we know that there are six zero eigenvalues.
The first two pairs are a consequence of the two cyclic coordinates, the pitch and
the yaw, in the system. The potential energy is only a function of the rotation
along the longitudinal axis, the roll angle. The last two zero eigenvalues describe
the kinematic motion of the point of contact (x, y). The remaining two non-zero
eigenvalues of the perturbed rectilinear motion in the speed range of 0 ≤ v ≤ 1,
where speed scales according to

√
gr , are shown in Figure 4. At low speed there are

two equal and opposite real eigenvalues describing unstable perturbed motion, just
like an inverted pendulum. At increasing speed these eigenvalues move to zero,
where at the critical speed [3], v = 1/

√
3 ≈ 0.58, they change into a pair of

conjugated imaginary values which describe an undamped oscillatory motion. The
corresponding eigenmode is of the slalom type and can best be characterised by a
90◦ phase angle between the roll and the yaw motion. Further increase of the speed
shows an approximately linear increase in the eigenvalues.

The unstable perturbed motion, below the critical speed, is illustrated by a tran-
sient analysis. The initial conditions are a vertical position with a forward speed of
v = 0.4116, an angular roll velocity of −0.01 and a zero yaw rate. The path of the
centre of the disk and the path of the contact point in the plane are shown in Figure 5
for the time period of 87 units, where one time unit scales according to

√
r/g. The

low roll velocity starts the initially exponentially increasing inclination of the disk,
after which it makes a sharp turn and rises up again to the vertical position. This
motion is repeated at equal time intervals and in alternating turning directions. The
unstable rectilinear motion is transformed into a quasi periodic motion where the
disk continues to wobble forward. The initial conditions were chosen such that the



FLEXIBLE MULTIBODY SYSTEMS WITH NON-HOLONOMIC CONSTRAINTS 119

Figure 6. Forces in the contact point of a rolling disk on a horizontal plane at subcritical speed
for a time period of 87 units, with an initial forward velocity 0.4116 and a roll velocity −0.01.

path shows a nice geometric figure where the contact point intersects itself almost
perpendicular.

The forces in the contact point exerted by the wheel on the plane for this quasi
periodic motion are shown in Figure 6. During cornering the lateral and normal
force increase in magnitude whereas the longitudinal contact force shows a short
oscillation indicating an accelerating and decelerating longitudinal motion. The
ratio of the in-plane contact force to the normal contact force during cornering is
at most 0.52. The friction coefficient must be above this value to ensure rolling
without slipping.

However, if we assume that the rolling contact is not ideal and the tangential
contact forces are linear functions of the slip velocities, then the disk on a smooth
surface will slip into an almost cyclic motion during the first turn. In this motion
the centre of mass mainly moves in the downward direction while the rotation
of the point of contact increases rapidly. The disk will eventually come to the
singular horizontal rest position in a finite time. Compare this to the behaviour
of the contemporary executive toy known as ‘Euler’s Disk’; a smooth edged disk
on a slight concave supporting bowl which whirrs and shudders to a horizontal rest.

3.3. KINEMATIC SHIMMY OF A CASTER WHEEL

As an example of a flexible multibody system with non-holonomic constraints we
will analyse the kinematic (or static) shimmy of a caster wheel of an aircraft land-
ing gear. Kantrowitz [21] was the first who analysed this kinematic shimmy and
demonstrated the phenomena in an experimental setup. The mass of the airplane
is assumed large with respect to the caster wheel assembly, so that the attachment
point of the yoke to the airplane may be assumed to move forward at a constant
speed v. Then in Figure 7, which is a back view and side view of the assembly, point
B is the point where the yoke is hinged to the airplane. To demonstrate the principal
mechanism for the kinematic shimmy we will assume that the caster length (trail)
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Figure 7. Caster wheel moving at a forward speed v; (a) back view and (b) side view.

and the caster angle (rake angle) are zero, resulting in the wheel centre A and the
contact point C of the wheel vertically under B. For the wheel-surface contact
we will assume a finite contact area with zero longitudinal slip, zero lateral slip,
and zero spin; these are the three non-holonomic conditions on the system. The
yoke A–B is assumed to have a finite bending stiffness such that point A can flex
sideways and that the wheel axle can rotate along he x-axis, the roll angle. To make
the problem statically determinate we release the radial deflection of the tire.

In a first approximation we assume the lateral deflection in A to be negligible.
This model has zero degrees of freedom but due to the three non-holonomic con-
straints, it has three kinematic coordinates. For these kinematic coordinates we
choose the three successive rotations of the wheel, starting with a yaw angle ψ

along the global z-axis followed by the roll angle φ along the rotated x-axis and
finally the pitch angle θ along the wheel local y-axis. These three coordinates
define the state of the system. In the absence of the degrees of freedom qd the
linearized state equations (29) now only have the Bk matrix term, reading

 �ψ̇

�φ̇

�θ̇


 =


 0 ω 0

−ω 0 0
0 0 0





 �ψ

�φ

�θ


 , (34)

with the wheel radius r and the angular velocity ω = v/r of the wheel along
the negative y-axis. From (34) we conclude that the system has a pure oscillatory
motion in the yaw angle ψ and the roll angle φ with radial eigenfrequency ω. For
the corresponding eigenmotion we will look at the path of the contact point C. The
lateral displacement of the contact point �y is kinematically coupled to the roll
angle by �y = −r�φ. The corresponding eigenmotion is the kinematic (or static)
shimmy where the contact point C shows a sinusoidal path with wavelength 2πr

and were the yaw angle and the roll angle are 90◦ out of phase.
To verify this result we made a finite element model where the fork has finite

stiffness. The model consists of a three-dimensional wheel element [19] attached
in point A to a flexible beam. The wheel has zero longitudinal slip, zero lateral
slip, and zero spin. The inextensible beam which is compliant for bending in the
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Figure 8. Kinematic shimmy motion; (a) the lateral contact point displacement y as a function
of the longitudinal contact point displacement x and (b) the lateral beam deflection δ, the roll
angle φ, and the yaw angle ψ of the wheel as a function of the longitudinal contact point
displacement x.

yz-plane and rigid in the xz-plane is connected in B by a cylindrical hinge to the
airplane. The hinge is free to rotate along its hinge axis and we release the radial
deformation of the tire to make the problem statically determinate. We assume that
the wheel has uniformly distributed unit mass and unit radius r. The massless beam
has unit length l and a bending stiffness of EI = 10 with a relative damping of
1%. The caster wheel is moved forward at a unit speed v and the initial conditions
are a yaw angle ψ = 0.1 [rad] and zero roll angle. Figure 8a shows the oscillatory
path of the contact point, whereas in Figure 8b the lateral beam deflection δ, the
roll angle φ and the yaw angle ψ of the wheel as a function of the longitudinal
contact point displacement x are shown. A high frequency transient which dies
out fast is just discernible in the lateral beam deflection δ and the roll angle φ,
after which the system settles into periodic motion with constant amplitudes. We
therefore truly can speak of a kinematic or static shimmy. The resulting wavelength
is 7.83 which is about 25% longer than the previously found 2πr at unit radius r.
It is expected that the wavelength increases since the wheel centre now can flex
sideways. If we assume static loading then the beam is loaded by a shear force in A

equal to the lateral contact force Fy and a moment in A which is equal to Fyr. The
lateral beam deflection δ and the endpoint rotation φ which is in fact the roll angle
of the wheel, are now coupled as in δ = −kφr. The factor k is only a function of
the ratio of the beam length over the wheel radius ξ = l/r and can be calculated
as k = ξ(2ξ +3)/(3ξ +6). Reformulating the linearized dynamical equations (34)
results in

 �ψ̇

�φ̇

�θ̇


 =


 0 ω 0

− ω
1+k

0 0
0 0 0





 �ψ

�φ

�θ


 , (35)

from which we conclude that the radial eigenfrequency of the kinematic shimmy is
decreased by a factor 1/

√
1 + k, and the corresponding wavelength of the contact

path is increased by a factor
√

1 + k. In our case where ξ = 1 this results in a
wavelength of 7.836 which compares well with the value from Figure 8.
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4. Conclusion

A procedure has been described for formulating the dynamical equations of non-
holonomic mechanical systems as well as their linearized equations. The procedure
can be applied to systems with flexible bodies with the same ease as to systems with
rigid bodies. Advantages of the procedure are the use of a set of minimal independ-
ent state variables, which avoid the use of differential-algebraic equations, and the
analytic linearization, which is more accurate than numerical differentiation. The
linearized equations can be used to analyse the stability of a nominal steady motion.
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