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 A B S T R A C T

Falls are a significant cause of injury among cyclists, highlighting the need for effective fall prevention inter-
ventions. However, ex-ante evaluation of such interventions remains challenging for engineers designing safer 
infrastructure and bicycles, as well as for safety professionals developing training programs. This study proposes 
the Maximum Allowable Handlebar Disturbance (MAHD) — the largest external handlebar disturbance a cyclist 
can recover from — as a performance indicator for evaluating fall prevention interventions. While bicycle 
dynamics and cyclist control models have the potential to determine this indicator and simulate interventions, 
their application is currently limited by a lack of validation in predicting the MAHD and the narrow range 
of interventions that can be incorporated into existing cyclist control models. To address these limitations, 
we conducted controlled experiments with 24 participants of varying ages and skill levels, exposing them to 
impulse-like handlebar disturbances that resulted in both recoveries and falls. This dataset, which includes 
recorded cyclist falls, supports future validation of bicycle dynamics and control models in predicting the 
MAHD. In addition, using Bayesian Model Averaging, we identified key cyclist factors influencing the MAHD, 
with forward speed and cyclist balancing skill being critical predictors. Incorporating these predictors into 
cyclist control models can substantially improve their practical application. These insights were then used to 
develop a Bayesian multilevel logistic regression model to predict the MAHD for different types of cyclists. 
Our findings improve the potential for bicycle dynamics and control models to proactively evaluate cyclist fall 

prevention methods, contributing to safer cycling environments.
1. Introduction

Falls are a leading cause of serious cycling injuries, accounting 
for approximately two-thirds of incidents (Schepers et al., 2015). This 
underscores the need for effective fall prevention interventions (Beck 
et al., 2016; Schepers et al., 2017; Utriainen et al., 2023). The fall 
risk relates to the inherent instability of the bicycle–cyclist system, 
especially in emergency situations involving non-linear dynamics. Bal-
ance recovery in such moments requires skill and becomes impossible 
beyond certain lean and steering angles. Although the mechanics of bi-
cycle stability have been well studied (Meijaard et al., 2007; Kooijman 
et al., 2011; Schwab and Meijaard, 2013; Schwab et al., 2012), evaluat-
ing fall prevention interventions remains methodologically challenging.

Various approaches have been used to evaluate cycling safety in-
terventions, including statistical analysis of crash records (Elvik, 2001; 
Hoye, 2018; Hellman and Lindman, 2023; Lubbe et al., 2022), surro-
gate safety indicators from video recordings (Sayed et al., 2013; van 
der Horst et al., 2014), field-based and experimental studies involving 
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cyclists (de Waard et al., 2010; Vlakveld et al., 2015; Dubbeldam 
et al., 2017; Andersson et al., 2023; Kircher and Niska, 2024; Andersérs 
et al., 2024), crash-testing (Niska and Wenäll, 2019; Niska et al., 2022; 
Peng et al., 2012; Fahlstedt et al., 2016; Baker et al., 2024), and 
traffic simulation models (Twaddle et al., 2014; Schmidt et al., 2023). 
However, these methods have limitations in evaluating fall-specific 
interventions such as balance training programs (Keppner et al., 2023), 
balance-assist technologies (Alizadehsaravi and Moore, 2023), sloped 
kerbs (Janssen et al., 2018), and ridable road shoulders (Westerhuis 
et al., 2020).

Crash data analyses are limited by underreporting of single-bicycle 
crashes, most of which are falls (Schepers et al., 2015; Utriainen 
et al., 2023). Surrogate indicators, such as Time-To-Collision or Post 
Encroachment Time, typically focus on interactions with other road 
users, ignoring single bicycle crashes, which account for most serious 
injuries (Utriainen et al., 2023). Studies involving cyclists often rely 
on indirect and unvalidated indicators, such as perceived safety or 
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Fig. 1. Overview of the experimental setup, with: 1-treadmill, 2-bicycle, 3-pull force motor (4), 4-pull rope (4), 5-force sensor (4), 6-Speedgoat real-time controller, 7-intelligent 
harness, 8-soft padding (8), 9-disc wheel cover (2), 10-foot strap (2), 11-mechanical rotation limiter, 12-rear-brake handle, 13-helmet, 14-protective gloves (2), 15-motion capture 
camera (12), 16-IMU (4), 17-EMG measurement unit (4), 18-folding fence.
lean angles. Crash tests primarily target injury mitigation rather than 
fall prevention. Moreover, current traffic simulation models overlook 
bicycle balance and lateral dynamics, which are essential for simu-
lating falls. Thus, while falls are the dominant crash mechanism, it 
remains difficult to evaluate fall prevention interventions using existing 
methods.

To address this gap, we propose a novel, proactive evaluation 
approach based on the Maximum Allowable Handlebar Disturbance 
(MAHD), defined as the largest lateral disturbance a cyclist can with-
stand before losing balance, and using bicycle dynamics and cyclist 
control models to determine the MAHD.

This disturbance-based approach draws inspiration from gait re-
search, where such methods have proven effective for identifying fall 
risk and evaluating interventions (Bruijn et al., 2013). A similar concept 
is applicable to cycling. However, past cycling studies have only consid-
ered small disturbances using linearised models (Moore, 2012; Schwab 
et al., 2013). These studies are insufficient for understanding fall risk 
from large disturbances. Cyclists may respond differently depending on 
disturbance magnitude because of differences in individual characteris-
tics such as strength or reaction time — a pattern also observed in gait 
research (Bruijn et al., 2013).

Bicycle dynamics and control models, grounded in physics and 
control theory, offer a cost-effective approach to proactively evaluate a 
wide range of fall prevention interventions. However, two key chal-
lenges limit their current use. First, existing models have only been 
validated for small disturbances, not actual falls, making it unclear if 
they can predict the MAHD. Second, cyclist control models currently 
rely on abstract control parameters (Schwab and Meijaard, 2013), re-
stricting their applicability to incorporate interventions targeting cyclist 
control. Improving the practicality of these models requires identifying 
key cyclist characteristics that influence MAHD.

The long-term goal of this study is to improve the application of 
bicycle dynamics and cyclist control models for proactively evaluating 
fall prevention interventions. As a step towards this, we conducted 
controlled cyclist experiments involving 24 participants exposed to 
impulse-like handlebar disturbances, resulting in both recoveries and 
falls. These are the first such experiments to safely simulate actual 
cycling falls. Using Bayesian Model Averaging and multilevel logis-
tic regression, we identified key cyclist characteristics predicting fall 
outcomes and estimated each participant’s MAHD.
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Table 1
Summary of participant characteristics by age group, including number of participants, 
gender distribution, mean age, length, and weight with standard deviations (S.D.)
 Group # Gender Age (y) Length (m) Weight (kg) 
 Young 12 7 ♂, 5 ♀ 28.8 (4.1) 1.82 (0.10) 75.2 (13.4)  
 Old 12 7 ♂, 5 ♀ 65.2 (4.9) 1.78 (0.09) 78.0 (11.6)  

2. Methods

This section describes the experimental data and the development of 
a Bayesian multilevel logistic regression model to predict the Maximum 
Allowable Handlebar Disturbance (MAHD).

2.1. Experimental data

Controlled cyclist experiments were conducted at Delft University of 
Technology, with approval from the Human Research Ethics Committee 
(approval no. 1870). Participants cycled on a treadmill while handlebar 
disturbances of varying magnitudes were repeatedly applied, resulting 
in both balance recoveries and falls. The threshold beyond which 
balance could not be recovered was defined as the MAHD.

2.1.1. Participants
Twenty-four participants were recruited, equally divided into two 

age groups: 20–35 years and 60+ years. Each group included seven men 
and five women. Heights and weights were comparable across groups 
and representative of the Dutch population. All participants were in 
good health, experienced cyclists, and cycled regularly. Participant 
characteristics are summarised in Table  1.

2.1.2. Experimental set-up
The experimental setup (Fig.  1) included a treadmill, a standard 

Dutch city bicycle equipped with sensors, a rope-driven perturbation 
system to apply handlebar disturbances, twelve motion-capture cam-
eras, four EMG sensors, and an intelligent safety harness. The bicycle’s 
forward speed, steer rate, and lean rate were recorded, and the cyclist’s 
motion and muscle activity were measured. 
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Fig. 2. Disturbance force profile, of the force sensors, for a clockwise handlebar 
disturbance of 60 N for 0.3 s, with the desired step-like force profile 𝐹𝑑 , denoted by 
the dashed line. This corresponds to an angular impulse 𝛥𝐿 of 18 N ms. The red lines 
are the measured clockwise forces on the left and right handlebars 𝐹2 and 𝐹4, whereas 
the green lines are the counterclockwise forces 𝐹1 and 𝐹3. The ropes generating the 
disturbance forces were positioned relative to the cyclist on the treadmill as follows: 
rope 1, front right; rope 2, front left; rope 3, rear left; and rope 4, rear right. The 
black line is the effective force profile 𝐹eff = (𝐹2 + 𝐹4 − 𝐹1 − 𝐹3)∕2. All ropes have a 
controlled pre-tension of 5 N.  (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)

Treadmill and bicycle
Participants cycled on a 2.62 m by 1.2 m treadmill and on a Gazelle 

Grenoble/Arroyo Elite HMB e-bike (battery removed, small frame size). 
The participants were allowed to adjust saddle and handlebar positions. 
All gears were available, and cycling was unassisted.
Disturbances

To determine the MAHD, we applied impulse-like torque distur-
bances (0.3 s) about the steering axis using a closed-loop, rope-driven 
perturbation system. Four motor-controlled ropes were attached to 
the extended handlebars to generate clockwise or counterclockwise 
torques. Disturbance magnitude was defined in terms of force (eas-
ily convertible to angular impulse; see Section 2.1.4). Disturbances 
were algorithmically selected and manually triggered when the cyclist 
was riding upright, straight ahead, and centred on the treadmill. An 
example of a force profile is shown in Fig.  2.

The motors could exert forces up to 200 N with a 44 ms rise time, 
surpassing typical human reaction latency (Tan et al., 2020). Forces 
were measured via inline Sciame force sensors. Each motor (260 W 
Maxon EC-90 Flat, Maxon Group, Switzerland) was controlled by an 
ECSON 70/10 motor driver. A Speedgoat real-time controller (1 kHz) 
maintained 5 N pretension during undisturbed cycling and controlled 
the desired disturbance profile.

The closed-loop force controller used proportional (𝐾𝑝) and integral 
(𝐾𝑖) feedback. Gain tuning resulted in 𝐾𝑝 values of 1.5 (motors 1 and 
3), 2.00 (motor 2), and 1.75 (motor 4), with a uniform 𝐾𝑖 of 2 (1/s). 
The motors were positioned as follows: motor 1 - front right; motor 2 
- front left; motor 3 - rear left; motor 4 - rear right.
Safety precautions

To allow for safe falls, participants wore an intelligent harness
(Plooij et al., 2018) suspended from an overhead rail system. It allowed 
natural cycling movement while providing immediate support during 
falls (Fig.  3). As a backup, the treadmill was surrounded by angled 
(45◦) padding. During the experiment, the intelligent harness caught 
the participant every time.
3 
Additional safety measures included a wheel spoke cover and foot 
straps to prevent entrapment, foam padding on the frame and handle-
bars, a mechanical stop limiting handlebar rotation to ±45◦, relocation 
of the rear brake lever (centre-mounted) to prevent sudden braking, 
mandatory use of helmet and gloves, software limits on motor current 
and a Dyneema carbon-reinforced fishing line (minimal elasticity) tied 
in series with the ropes to prevent excessive disturbance forces.

These combined precautions ensured that all participants completed 
the experiment without injury.

2.1.3. Experimental protocol
All participants provided informed consent prior to participation 

and participated voluntarily. The experimental protocol consisted of 
two phases: first a familiarisation phase to build trust in the safety 
harness and learn to cycle on the treadmill, and second the MAHD 
determination phase.
Familiarisation phase

Participants first practised with the harness, initially standing still 
and then sitting on the stationary bicycle, to gain confidence that the 
harness would safely catch them in case of a fall (Fig.  3). They then 
learned to cycle on the treadmill at a constant speed while gradually 
releasing a padded support fence, which was folded down once partic-
ipants were cycling steadily upright and straight ahead. The learning 
phase was completed when participants could cycle in a controlled 
manner for several seconds within 10 cm of the left and right borders 
of the treadmill and for one minute along its centreline. The familiari-
sation phase typically took 10 to 15 min. Only one participant required 
longer. Full details of this phase are provided in Supplementary Online 
Material.

MAHD determination phase
The MAHD was defined as the threshold at which there is a 50% 

probability the participant will fall. Participants experienced a se-
ries of impulse-like handlebar disturbances of varying magnitude and 
direction while cycling steadily. They were informed prior to the exper-
iment that disturbances would be applied and were instructed to brace 
themselves and try their best to recover balance.

The outcomes (fall/recovery) were used to fit a logistic regression 
model. To illustrate this concept, Fig.  4 shows the results of a simple 
logistic regression analysis applied to example trial data from Fig.  5. In 
Section 2.2, we describe the more complex Bayesian multilevel logistic 
regression model used in this study to determine the MAHD for each 
participant.

An initial MAHD estimate was obtained using a simple staircase 
procedure. Subsequently, 20 disturbances were applied per speed con-
dition. The disturbance magnitudes were centred around the estimated 
MAHD and adjusted adaptively using a random adaptive staircase 
procedure (Doll et al., 2014). This procedure defined a set of five 
equidistant disturbance forces centred around the moving MAHD esti-
mate, from which each upcoming force was randomly selected. Clock-
wise and counterclockwise disturbances were applied in random or-
der. Between disturbances, participants repositioned themselves to ride 
upright, straight ahead, and centred on the treadmill.

Experiments were conducted at 12 km/h initially. Participants could 
then opt to repeat the protocol at 6 or 18 km/h in randomised order. 
The familiarisation phase and initial staircase procedure were repeated 
at each new speed. During the experiments, several participants spon-
taneously noted that a treadmill speed of 12 km/h felt subjectively 
comparable to 18 km/h on an open road and a treadmill speed of 
18 km/h felt much faster.

Participants could pause or stop the experiment at any time. One 
participant stopped early, while all others completed at least one set 
of 20 disturbances at 12 km/h. Minor technical interruptions occurred 
occasionally and affected trials were repeated as needed. Further details 
of the staircase algorithm and speed selection rationale are provided in 
the Supplementary Online Material.
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Fig. 3. A snapshot of a situation where the harness caught the participant.

Fig. 4. Example of a logistic regression model applied to the pull force data from Fig.  5. The white dots mark no fall, the dark dots mark a fall, and the area of the dots 
corresponds to the number of pulls at that specific force value. The solid line is the logistic regression line for the probability 𝑝 of falling as a function of the pull force 𝐹 . The 
pull force for which there is a 50% chance of falling is 𝐹50% = 56.1 N. This corresponds to an angular impulse of 13 N ms.

Fig. 5. Example of the random and adaptive staircase procedure to find the MAHD of the pull force 𝐹 applied at the handlebar for which a cyclist will not fall. White dots mark 
no fall, dark dots mark a fall, and grey crosses show potential pull forces from which is chosen at random. The initial search is to locate where the random staircase procedure 
should start.

Accident Analysis and Prevention 221 (2025) 108159 
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Table 2
Independent variables collected and considered for the statistical analysis to identify the key variables 
predictive of fall outcomes and the MAHD.
 Symbol Description Unit  
 Trial characteristics
 𝑣 Forward speed km/h  
 𝜙0 Lean angle at the moment the disturbance was applied rad  
 𝜙̇0 Lean rate at the moment the disturbance was applied rad/s  
 𝛿0 Steering angle at the moment the disturbance was applied rad  
 𝛿̇0 Steer rate at the moment the disturbance was applied rad/s  
 𝜓0 Heading at the moment the disturbance was applied rad  
 𝑦𝑄,0 Lateral position of the ground contact point of the front wheel with mm  
 Respect to the centre line of the treadmill at the moment the  
 Disturbance was applied  
 Disturbance characteristics
 𝛥𝐿 Angular impulse (magnitude of the applied handlebar disturbance) N ms  
 𝑗 Identification number of disturbance –  
 𝑑 Rotational direction of the disturbance, where 0 is a counterclockwise  
 Disturbance and 1 a clockwise perturbation –  
 𝑦 Outcome of disturbance, where 0 is a recovery of balance and 1 is a fall –  
 Task-unrelated participant characteristics
 𝑎 Age years  
 𝑚 Mass kg  
 ℎ Length m  
 𝑔 Gender, where 0 is female and 1 is male –  
 𝑖 Identification number of participant –  
 Task-related participant characteristics
 𝑆 Balancing control skill performance mm  
 𝐸 Balancing control effort rad2/s 
 𝜏 Reaction time of participant to applied disturbance s  
2.1.4. Data collection
This study focuses on identifying cyclist control characteristics that 

predict falls and the MAHD. We collected general — task-unrelated — 
participant characteristics and task-related characteristics. In addition, 
we measured bicycle states as well as trial and disturbance parameters. 
A summary of all variables is provided in Table  2, and details are 
described below.
Task-unrelated participant characteristics

Age (𝑎), height (ℎ), and gender (𝑔) were self-reported. Mass (𝑚) was 
measured prior to the experiment with participants wearing the pro-
tective gear. Finally, each participant was assigned a unique identifier 
(𝑖).

Task-related participant characteristics
Balancing control skill (𝑆) and effort (𝐸) were determined from a 

one-minute undisturbed cycling task at each forward speed. Prior to the 
application of disturbances at that speed, participants were instructed 
to maintain balance and follow a marked centreline on the treadmill 
for one minute.

Balance control skill (𝑆) was defined as the standard deviation of 
the lateral front wheel position relative to the treadmill centreline (𝑦fw), 
reconstructed from Qualisys motion capture data (100 Hz) using rigid 
body constraints and least-squares methods. Balance control effort (𝐸) 
was computed as the integral of squared steer rate (𝛿̇), derived from 
an IMU on the front fender (Delsys Trigno EMG sensor). This data 
was collected at 2 kHz and smoothed using a second-order low-pass 
Butterworth filter with a cutoff frequency of 20 Hz.

Reaction time (𝜏) was determined for each disturbance from EMG 
signals recorded on both biceps and triceps. The raw data was rectified, 
normalised, and smoothed using a second-order low-pass Butterworth 
filter with a cutoff frequency of 40 Hz. Reaction time was defined as 
the first point at which any of the four EMG signals exceeded twice 
the standard deviation of the baseline signal during the second before 
𝑡 = 0. Here, 𝑡 = 0 was defined as the time after the operator triggered 
the disturbance and when any of the four pull force measurements 
exceeded twice the baseline standard deviation of the force signal one 
second prior.
5 
Trial and disturbance characteristics
Forward speed (𝑣) was set by the treadmill (6, 12, or 18 km/h). 

Bicycle states at the moment the disturbance was applied — lean angle 
(𝜙0), lean rate (𝜙̇0), steering angle (𝛿0), steer rate (𝛿̇0), heading (𝜓0), 
and lateral position of the front wheel ground contact point (𝑦𝑄,0) — 
were reconstructed from motion capture data.

The disturbance magnitude (𝛥𝐿), defined as the angular impulse, 
was calculated from the effective force applied by four rope-driven 
actuators (measured at 1 kHz), multiplied by half of the handlebar 
width (𝑤ℎ = 0.82 m), disturbance duration (𝛥𝑡 = 0.3 s), and corrected 
for steer axis tilt (𝜆 = 21.5◦), by 

𝛥𝐿 = (𝐹2 + 𝐹4 − 𝐹1 − 𝐹3)
𝑤ℎ
2

cos(𝜆)𝛥𝑡. (1)

Each disturbance was labelled with an identifier (𝑗) and rotational 
direction (𝑑; 0 = counterclockwise, 1 = clockwise). Fall outcome (𝑦) 
was manually classified per trial (𝑦 = 1 if the participant fell, 𝑦 = 0
otherwise), based on observable events (e.g., a fall, foot placement or 
riding off the treadmill).
Synchronisation

EMG and motion capture data were synchronised via Qualisys Track 
Manager. Disturbance data from the Speedgoat real-time controller was 
synchronised with the Qualisys Track Manager via an analog signal 
representing the desired disturbance force.

2.2. Statistical modelling

In analysing the collected experimental data, we start with ex-
ploratory data analysis. We adopt the Bayesian approach to statistics 
to facilitate uncertainty quantification and derive a multilevel logistic 
regression model. For general background on Bayesian multilevel re-
gression modelling we refer to Gelman et al. (2013). We have centred 
and scaled all numerical predictors to have average zero and unit stan-
dard deviation. We use Bayesian Model Averaging to choose relevant 
variables. These are chosen to be those variables which are in the 
posterior median model (Barbieri and Berger, 2004; Clyde et al., 2011). 
We then refine the model based on the chosen set of variables by 
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taking into account the multilevel structure of the data. Clearly, such 
a structure is present in the data because experiments can be grouped 
by participant.

From the obtained multilevel logistic regression model we derive 
the posterior distribution of 𝛥𝐿50%, which we define as the angular 
impulse for which a participant has chance 50% of falling (i.e. our 
definition of the MAHD). In Sections 2.2.1–2.2.3 below, we detail the 
methods used in the statistical analysis.

The dataset, R scripts, additional explanatory notes, additional anal-
yses supporting our modelling choices and robustness checks are avail-
able in the Supplementary Online Material.

2.2.1. Bayesian model averaging
In the logistic regression model, we assume

𝑦𝑖𝑗 ∣ 𝜃𝑖𝑗
ind∼ Ber(𝜃𝑖𝑗 )

with log(𝜃𝑖𝑗∕(1 − 𝜃𝑖𝑗 )) being modelled by linear combination of the 
available predictors. Suppose the coefficient of the 𝑘th predictor in 
the model is 𝛼𝑘. With 𝑝 predictors, there are 2𝑝 possible models. In 
the Bayesian approach, we equip each of these models with a prior 
probability. If additionally a prior on the coefficients 𝛼1,… , 𝛼𝑝 is im-
posed, the posterior probability of each of the models can be derived. 
In general, the computations can be intensive, and approximation- or 
sampling methods may be required. For the logistic regression model 
this topic is covered in Clyde et al. (2011). Bayesian Model Averaging 
(see for instance Hoeting et al., 1999) encapsulates the idea that there 
may be multiple models that explain the data and predictions should 
be aggregated over predictions within all models, weighted by their 
posterior probabilities. In our setting, however, besides model predic-
tion, we also care about finding those predictors that are relevant, 
hoping that some predictors are irrelevant (and therefore need not 
be recorded) for the prediction of the outcome. Barbieri and Berger 
(2004) advocate the median probability model which is the model that 
only includes all predictors which have posterior inclusion probability 
exceeding 1∕2. It is this approach we follow here, using the R-package 
BAS (Clyde, 2022). Specific settings (including the prior specification) 
can be found in the online supplementary material. In the search over 
models, we impose that angular impulse 𝛥𝐿 is always included in the 
model. Furthermore, we impose that the identification number of the 
participant 𝑖 is treated as one factor, which is either in- or excluded 
from the model.

2.2.2. Multilevel logistic regression model
The dataset comprises multiple observations per participant. By 

using the grouping variable participant 𝛽𝑖 we induce a hierarchical 
(multi-level) structure as one can expect that some participants simply 
perform better than others.

The very simplest model that takes the grouping structure into 
account is the following. 

𝑦𝑖𝑗 ∣ 𝜃𝑖
ind∼ Ber(𝜃𝑖)

𝛬(𝜃𝑖) = 𝛽𝑖
{𝛽𝑖} ∼ N(𝛽, 𝜎2𝛽 ).

(2)

Here 𝛬(𝑥) = log (𝑥∕(1 − 𝑥)) and Ber(𝜃) denote the logit-function 
and Bernoulli-distribution respectively where 𝜃𝑖 denotes the probability 
of falling for the 𝑖th participant. The bottom line specifies the prior 
distribution of the model parameters. One disadvantage of this model 
is the data for each participant are analysed separately. A multilevel 
model rightfully acknowledges that these participants are part of a 
larger population and share common features: data of one participant 
may help predict if a similar participant will fall in a particular setting. 
This pooling (sharing) of information is a key idea in multilevel models. 
Within the Bayesian viewpoint taken here, this can be accomplished by 
providing priors on 𝛽 and 𝜎2.
𝛽

6 
Another apparent disadvantage of the model specified in Eq.  (2) is 
that it only takes participant variation into account. Potentially better 
models can be obtained by adding variables. Let 𝑥𝑖𝑗 =

(

𝑥(1)𝑖𝑗 , 𝑥
(2)
𝑖𝑗 ,

… , 𝑥(𝑛)𝑖𝑗
)

 denote a vector of 𝑛 variables. Then we propose the following 
model 

𝑦𝑖𝑗 ∣ 𝜃𝑖𝑗
ind∼ Ber(𝜃𝑖𝑗 )

𝛬(𝜃𝑖𝑗 ) = 𝛽0 + 𝛽𝑖 +
𝑛
∑

𝑘=1
𝛼𝑘𝑥

(𝑘)
𝑖𝑗 + 𝛾𝛥𝐿𝑖𝑗

{𝛽𝑖}
iid∼ N(0, 𝜎2𝛽 )

𝛽0, {𝛼𝑘}, 𝛾
iid∼ N(0, 𝜎2)

𝜎𝛽 ∼ half-t3(2.5).

(3)

Recall that for this model it is assumed that all numerical predictors 
have been centred and scaled and that we imposed that angular impulse 
𝛥𝐿 is always included in the model. For the results presented, we took 
𝜎 = 2. We comment on sensitivity to this choice in Section 2.2.4. 
We used the brms-library in the R-language (Bürkner, 2017) to get 
posterior samples for the model specified in Eq.  (3). For 𝜎𝛽 we used 
the default half Student-𝑡 prior with 3 degrees of freedom and scale 
parameter equal to 2.5, which is denoted by half-t3(2.5).

In addition, to assess the quality of the model, we performed sev-
eral posterior predictive checks. These checks can be found in the 
online supplementary material. In addition, for an excellent accessible 
exposition on this topic, we refer to Chapter 10 in Lambert (2018).

2.2.3. Maximum allowable handlebar disturbance
We define the MAHD as the angular impulse that induces a 50% 

chance of falling and use the model described in Eq.  (3) to determine 
the MAHD. Note that 50% is an arbitrary value, but other thresholds 
can be derived in a similar matter.

The MAHD is the value of the angular impulse for which the 
probability of falling is equal to 50% (that is, 1/2), denoted by 𝛥𝐿50%, 
and is uniquely determined by the relation

𝛽0 + 𝛽𝑖 +
𝑛
∑

𝑘=1
𝛼𝑘𝑥

(𝑘) + 𝛾𝛥𝐿50% = 0

from which we derive 

𝛥𝐿50%(𝑥1,… , 𝑥𝐾 ) = −
𝛽0 + 𝛽𝑖 +

∑𝑛
𝑘=1 𝛼𝑘𝑥

(𝑘)

𝛾
. (4)

The posterior distribution of 𝛥𝐿50% is intractable, but can be approxi-
mated using Monte Carlo simulation, since the fitted model provided 
us with samples from the posterior distribution of (𝛽0, {𝛽𝑖}, {𝛼𝑘}, 𝛾). 
Hence, the posterior distribution of 𝛥𝐿50% for participant 𝑖 can be 
approximated as follows.

1. take a posterior sample (𝛽𝑖, 𝛽0, {𝛼𝑘}, 𝛾);
2. compute 𝛥𝐿50% according to Eq.  (4);
3. repeat steps (1) and (2) a large number of times.

Here, we see that the Bayesian approach easily allows for uncer-
tainty quantification on 𝛥𝐿50%(𝑥1,… , 𝑥𝐾 ). Rather than a simple point 
estimate, we get its posterior distribution.

For a new participant, not part of the experiment, steps (1) and (2) 
need a slight adjustment. In this case, we do not have any samples 
from 𝛽𝑖 in step (2). Instead, we first sample 𝜎𝛽 from its posterior and 
subsequently sample from a Normal distribution with this standard 
deviation. As a consequence, there will be much higher uncertainty 
on predictions for people who were not among the participants in the 
experiment.

To evaluate the model’s predictions for ‘new’ participants, we de-
fined six cyclist types that vary in skill level and forward speed (Table 
3). These types were selected to span a range of skill performance 𝑆
levels and forward speeds. Specifically, 𝑆 = 40 and 𝑆 = 90 represent 
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Fig. 6. Each panel corresponds to a participant, ordered by age. The binary outcome variable ‘falling’ is displayed versus angular impulse. The colouring of points corresponds to 
forward speed. This figure shows the substantial influence of angular impulse on the outcome variable.  (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.)

Table 3
Posterior distribution of parameter 𝛥𝐿50% for six types of cyclists. The name is 
representative of the characteristics of that cyclist. For example, s40v12 has a skill 
performance 𝑆 of 40 mm and cycles at a forward speed 𝑣 of 12 km/h.
 Cyclist type 𝑆 (mm) 𝑣 (km/h) 
 s40v12 40 12  
 s90v12 90 12  
 s40v6 40 6  
 s90v6 90 6  
 s40v18 40 18  
 s40v25 40 25  

the approximate lower and upper bounds observed in the experiments 
among participants, while the speeds of 6, 12, and 18 km/h reflect the 
tested speed conditions. One extrapolated case at 25 km/h is included 
to illustrate the model’s prediction slightly outside the experimental 
conditions. The disturbance number 𝑗 and disturbance direction were 
kept constant and were 1 and clockwise, respectively.

2.2.4. Robustness check
To asses robustness of the highest ranked model, we also fitted 

a generalised linear model including random effects model using the 
lme4-package in R (Bates et al., 2015) and conducted a prior sensitivity 
analysis by varying 𝜎 in the prior to the value 5.

3. Results

A total of 928 observations were collected from 24 participants 
across one to three forward speeds (Fig.  6). Six participants completed 
the experiment at 12 km/h only, six at 12 and 6 km/h, six at 12 and 
18 km/h, and six at all three speeds. For each set of 20 disturbances per 
speed, participants experienced at least seven falls and eight recoveries, 
confirming that the random staircase procedure targeted a 50% fall 
probability. Only one participant dropped out after 10 disturbances.

Reaction time (𝜏) was missing for 17 observations due to occasional 
EMG data loss and approximately 150 observations with implausibly 
low 𝜏 were excluded. Skill performance (𝑆) was missing for one par-
ticipant at one forward speed (twenty observations) due to marker 
occlusion. Similarly, four observations of the disturbance direction (𝑑) 
were missing.
7 
Bayesian Model Averaging results are shown in Figs.  7 and 8. The 
most probable model (log posterior odds 1.594) included participant 
ID (𝑖), angular impulse (𝛥𝐿), skill performance (𝑆), forward speed (𝑣), 
disturbance ID (𝑗), disturbance direction (𝑑), lean angle (𝜙0), and steer 
rate (𝛿̇0). The second-ranked model differed only by excluding 𝑑.

Table  4 summarises the posterior distributions for the highest-
ranked model. None of the credible intervals from all the variables 
contains a zero and the Rhat-values indicate no problems with the 
underlying Hamiltonian-Monte-Carlo method.

Figs.  9 and 10 display the posterior distributions of participant 
effects (𝛽𝑖) and independent variable coefficients. The posterior of each 
𝛽𝑖 seems to be approximately normally distributed and there is more 
variation in 𝛽𝑖 among younger participants than older participants. The 
posterior distributions of the coefficients of the independent variables 
also seem to be normally distributed.

Fig.  11 provides a posterior predictive check, indicating reasonable 
agreement between observed and predicted fall rates across partici-
pants and speeds.

Figs.  12 and 13 show posterior distributions of 𝛥𝐿50% (MAHD) 
for selected participants and hypothetical cyclist profiles, respectively, 
across different forward speeds.

The results from the robustness check can be found in the online 
supplementary material. The estimates agree very well with the coeffi-
cient estimates obtained within the Bayesian setup. At 5% significance 
level all included variables are significant. While we have a preference 
for the Bayesian approach, it is reassuring to see that the frequentist 
approach gives similar results. We also refitted the Bayesian model 
in Eq.  (3) with 𝜎 equal to 5. The results in the latter case are not 
much different from those presented. If 𝜎 is set to 1 we noticed that 
the estimates get more shrunken towards zero.

4. Discussion

This study provides the first experimental data on cyclist falls and 
the Maximum Allowable Handlebar Disturbance (MAHD), addressing 
two key gaps in the application of bicycle dynamics and cyclist control 
models: the lack of experimental fall data, and the abstract nature 
of existing cyclist control models. Using controlled fall experiments 
with 24 participants, we identified key predictors of balance recovery, 
determined MAHD values, and demonstrated how such models can 
support proactive evaluation of fall prevention interventions.
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Table 4
Results for model defined in Eq.  (3) and ranked highest in the heat map (see Fig.  7). The table shows the posterior mean estimate, the estimated error, the lower and upper 95% 
credible interval, the Rhat values, and the bulk and tail ESS.
 Variable Coeff. Estimate Est. error l-95% CI u-95% CI Rhat bulk𝐸𝑆𝑆 tail𝐸𝑆𝑆
 Intercept 𝛽0 (–) 0.47 0.73 −0.97 1.90 1.00 8326 15883 
 𝜙0 𝛼1 (1/rad) 0.42 0.18 0.08 0.77 1.00 40802 41365 
 𝑑 𝛼2 (–) −0.49 0.25 −0.98 −0.01 1.00 46800 43224 
 𝑆 𝛼3 (1/mm) 0.71 0.22 0.28 1.14 1.00 31057 39087 
 𝛿̇0 𝛼4 (s/rad) −0.49 0.15 −0.79 −0.18 1.00 45573 42651 
 𝑣 𝛼5 (h/km) 1.62 0.18 1.27 1.98 1.00 32852 38786 
 𝑗 𝛼6 (–) −0.77 0.15 −1.07 −0.48 1.00 43014 39719 
 𝛥𝐿 𝛾 (1/N ms) 5.26 0.38 4.55 6.03 1.00 32380 36693 
 sd (Intercept) 𝜎𝛽 (–) 3.69 0.63 2.66 5.10 1.00 11420 21438 
Fig. 7. Heat map of models, ordered along the horizontal axis by their log posterior 
odds. Black boxes denote that the variable is not in the model. The participant IDs 𝑖
are ordered according to age.

Disturbance choice
Cycling disturbances that throw a cyclist off balance can arise from 

impacts (e.g., collisions), uneven surfaces, wind gusts, or unintended 
steering. While real-world force profiles remain largely unmeasured, 
impulse-like disturbances offer a reasonable approximation, as many 
such disturbances occur over short timescales. The chosen 0.3-s con-
stant high torque input provided a sudden disturbance within hardware 
limits.

Given the coupling of lean and steer dynamics, handlebar dis-
turbances effectively reflect cyclist responses to other impulse-like 
8 
Fig. 8. Posterior inclusion probabilities. Variables which have a probability exceeding 
1∕2, indicated by the red vertical line, are in the median probability model.  (For 
interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)

disturbances beyond a pure handlebar torque disturbance. Moreover, 
steering into the direction of the fall is the most effective recovery strat-
egy across these types of disturbances (Kooijman et al., 2011). Hence, 
we believe it is reasonable to assume that if an intervention increases 
the MAHD, it will also increase the threshold for other disturbances.

While previous studies have applied disturbances to the rear frame 
via lateral pushes or shifts in tire-ground contact points (Schwab et al., 
2013; Bulsink et al., 2016; Dialynas et al., 2023), we chose to apply 
an impulse-like torque to the handlebars for three reasons. First, the 
handlebars are highly sensitive, requiring minimal torques to induce 
falls, thereby improving safety in case of experimental setup malfunc-
tions. Second, rear-frame disturbances demand greater forces than our 
system can safely generate (Tan et al., 2020). Third, handlebar torques 
more closely simulate real-world disturbances, while displacing the rear 
wheel’s ground contact point lacks similarity to typical disturbances 
encountered in real-world cycling.
Cyclist fall experiments

This study was the first to simulate actual cyclist falls. Our ex-
perimental setup and protocol proved both practical and safe: only 
one of 24 participants dropped out, and no injuries occurred — a 
notably low dropout rate compared to similar fall studies in walking or 
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Fig. 9. Posterior distribution of coefficients 𝛽𝑖 which represent a baseline for each participant’s cycling performance based on the highest ranked model and described by Eq.  (3). 
The coefficients are ordered from the lowest to the highest coefficient. The colour indicates the age of the individual participant.  (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Posterior distribution of the coefficients, shown in Table  4, for the highest 
ranked model.

standing (Pijnappels et al., 2008; Crenshaw et al., 2018). While some 
participants initially expressed anxiety, this dissipated after their first 
fall.

A key limitation is the use of a treadmill, which may affect en-
vironmental validity. This choice prioritised safety and measurement 
accuracy. While straight-ahead cycling dynamics at constant forward 
speed are comparable to real-world cycling, sensory inputs differ. Most 
participants required several attempts to cycle steadily on the treadmill, 
9 
Fig. 11. Posterior predictive check for the highest ranked model: fraction of falling 
per total number of disturbances for each participant and each forward speed, both 
observed in the experimental data and as predicted by the highest ranked model.
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Fig. 12. Posterior distribution of parameter 𝛥𝐿50%, which is equivalent to the MAHD, 
for participants 1, 9, 11 and 12 at different tested forward speeds 𝑣 (km/h) indicated 
in the labels on the vertical axis.

Fig. 13. Posterior distribution of parameter 𝛥𝐿50%, which is equivalent to the MAHD, 
for 6 types of cyclists, with characteristics as displayed in Table  3.

and many perceived 12 km/h on the treadmill as equivalent to higher 
speeds outdoors. The potential impact of treadmill cycling on cycling 
behaviour requires further investigation.

Participants were briefed about the upcoming disturbances. Conse-
quently, the MAHD values reported here may be considered optimistic. 
Randomisation of disturbance direction, magnitude, and timing helped 
mitigate predictability, yet the sequence number 𝑗 still influenced 
MAHD, with later trials showing higher thresholds.

Finally, the experimental dataset can be used for validating bicycle 
dynamics and cyclist control models for large disturbances close to 
the fall threshold. The recorded transient responses before, during, 
and after disturbances enable direct comparison with model predic-
tions. A validated model would allow safe, cost-effective evaluation of 
interventions without requiring further fall experiments.
Discussion on the statistical analysis

We evaluated models with different combinations of variables and 
used Bayesian Model Averaging to select the ‘best’ model. The problem 
of model selection has received substantial attention in the statis-
tics literature. There are many approaches to this and conclusions 
on a ‘best’ model do not necessarily agree among methods. In an 
early analysis of the data, model choice was based on expected log 
predictive density (elpd) (Vehtari et al., 2017), implemented in the 
loo-package (Vehtari et al., 2020). Here one can choose between 
leave-one-out or leave-group-out cross-validation to estimate the elpd. 
The grouping by participant makes the second option a natural choice 
but is computationally very intensive. While it is feasible to compare 
a given set of models, to the best of the author’s knowledge the loo-
package does not provide a methodology to effectively screen through 
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a large set of models. The BAS-package does allow for this, though 
it appears not easy to include the multilevel structure into it. For 
that reason, we have used the median probability model for variable 
selection and subsequently fitted the multilevel model described with 
(3). The resulting multilevel model turned out to give better LOO values 
than an initial search in the model space based on expert knowledge.
Experimental measurements of the MAHD

We determined the MAHD using a Bayesian multilevel logistic 
regression model. For participants in this study, mean MAHD values 
ranged from approximately 8 to 16 N ms across forward speeds of 6 to 
18 km/h, with a standard deviation of 4 N ms. These results provide 
an initial estimate of the maximum handlebar disturbance cyclists can 
withstand. We recommend eliminating disturbances exceeding these 
values from the road environment, though direct comparison to real-
world disturbances is currently limited by the lack of systematic data 
on their force and torque profiles.
Key cyclist characteristics predictive of fall outcome

We identified two key cyclist characteristics influencing MAHD: 
forward speed 𝑣 and balance skill 𝑆.

Forward speed 𝑣 was a strong predictor of MAHD (Fig.  8). Sur-
prisingly, participants tolerated higher disturbances at lower speeds, 
contrary to expectations based on increased bicycle instability at low 
speeds (Meijaard et al., 2007). This likely reflects treadmill constraints: 
at higher speeds, cyclists approached the treadmill edge more rapidly, 
requiring faster responses.

Balance skill 𝑆 also strongly predicted MAHD. We defined 𝑆 prag-
matically as the cyclist’s ability to maintain a centred trajectory during 
undisturbed cycling. While skill to respond to disturbances may differ 
from undisturbed performance, our findings underscores the notion 
that our definition at least captures an important fraction of the cyclist’s 
balancing skill.

Control effort 𝐸 was not a significant predictor of MAHD, nor was it 
correlated with 𝑆 (see the Supplementary Online Material). This aligns 
with findings from car-following studies, where task performance and 
effort show complex relationships (Abbink et al., 2011, 2012; Petermei-
jer et al., 2015). Cyclists, like drivers, may optimise performance to a 
level they consider sufficient rather than maximal.

Four other attributes — age, mass, length, and reaction time — 
showed limited predictive power (Fig.  8). The lack of an age effect 
was unexpected given older cyclists’ overrepresentation in injury statis-
tics (Weijermars et al., 2016; Boele-Vos et al., 2017; Boufous et al., 
2012), but suggests that when faced with a disturbance, older cyclists 
can recover as well as younger ones in controlled conditions. The higher 
injury rate could also be attributed to elderly being more sensitive to 
injury than younger cyclists.

The absence of a mass effect likely reflects our focus on handlebar 
disturbances, which primarily influence lateral dynamics independent 
of the cyclist mass. Variations in centre of mass height were also small, 
potentially explaining the lack of a length effect.

Reaction time (𝜏) was also absent in the highest-ranked model, 
but this result is inconclusive. Approximately 150 observations showed 
implausibly low 𝜏 values due to noisy EMG signals. These were omitted, 
reducing dataset size and potentially biasing the result. Importantly, 
this measurement issue affected only the reaction time variable.

Finally, participant ID 𝑖 emerged as an important predictor, suggest-
ing that other unmeasured cyclist characteristics influence MAHD and 
require further investigation.
Other key variables influencing the MAHD prediction

In addition to cyclist characteristics, our study highlighted other 
important predictors of MAHD: bicycle state at disturbance onset and 
disturbance direction.

Although we aimed to apply disturbances during steady, upright 
cycling at the treadmill centre, small variations in lean angle and steer 
rate (±3◦ and ±1◦/s, see online supplementary material) remained. 
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These small variations already significantly affected the MAHD. This 
observation aligns with expectations, as disturbances applied in the 
same direction as the cyclist was already steering at that time amplifies 
the effect.

Finally, the disturbance rotational direction also affected MAHD, 
potentially reflecting individual differences in dexterity, although this 
characteristic was not explicitly measured.
Practical implications

Our study aims to improve the practical use of bicycle dynamics 
and cyclist control models for proactively evaluating fall prevention 
interventions. This can provide valuable evidence on the effectiveness 
of a broader range of interventions, such as improved bicycle and 
infrastructure design and training programs. Such insights can support 
engineers, practitioners, and policymakers in selecting and promoting 
effective measures.

Beyond modelling, our experimental setup also has direct practical 
applications, such as screening individual fall risk or comparing bicy-
cle designs. Further details are provided in the online supplementary 
material.

5. Conclusion

This study is the first to provide experimental data on cyclists falls 
under controlled disturbances. We conducted the controlled cyclist fall 
experiments with 24 participants and developed a Bayesian multilevel 
logistic regression model to predict the Maximum Allowable Handlebar 
Disturbance (MAHD), reflecting the maximum disturbance from which 
a cyclist can recover balance.

This dataset and model provide a valuable tool for validating bicycle 
dynamics and cyclist control models in fall scenarios and predicting 
MAHD thresholds.

We identified forward speed 𝑣 and skill performance 𝑆 — the 
ability to maintain balance and follow a centreline — as key predictors 
of the MAHD. Notably, age did not emerge as a significant factor. 
Incorporating 𝑣 and 𝑆 into cyclist control models can improve their 
practical application.

Our findings represent a step forward in applying bicycle dynamics 
and cyclist control models to proactively evaluate fall prevention in-
terventions such as safer infrastructure or bicycle designs, and training 
programs.
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