Il European Conference on Computational Mechanics
Solids, Structures and Coupled Problems in Engineering
C.A. Mota Soares et al. (eds.)
Lisbon, Portugal, 5-9 June 2006

LINEARIZED EQUATIONS FOR AN EXTENDED BICYCLE MODEL

J. P. Meijaard! and A. L. Schwal?

1School of Mechanical, Materials and Manufacturing Engjimeg
The University of Nottingham
University Park, Nottingham NG7 2RD, United Kingdom
jaap.meijaard@nottingham.ac.uk

2Laboratory for Engineering Mechanics
Delft University of Technology
Mekelweg 2, NL-2628 CD Delft, The Netherlands

Keywords: Bicycle Dynamics, Linearized Equations, Non-Holonomim&iwaints, Multibody
Dynamics.

Abstract. The linearized equations of motion for a bicycle of the usoalstruction travelling
straight ahead on a level surface have been the subject efaeprevious studies. In the
simplest models, the pure-rolling conditions of the kmifiese wheels are introduced as non-
holonomic constraints and the rider is assumed to be rigiditgched to the rear frame. There
are two degrees of freedom for the lateral motion, the leagl@mf the rear frame and the
steering angle. In the present paper, the model is extendsemMeral ways, while the simplicity
of having only two degrees of freedom is retained. The extesn®f the model comprise the
shape of the tires, which are allowed to have a finite trans¥eadius of curvature, the effect of
a pneumatic trail and a damping term due to normal spin at iteecontact patch, the gradient
of the road, the inclusion of driving and braking torques la¢ twheels and the aerodynamic
drag at the rear frame.

Owing to the gradient, the yaw angle of the rear frame is n@&ra cyclic coordinate and
the kinematic differential equation for its evolution ne¢al be included. A further consequence
is that the stiffness matrix is no longer symmetric, everzéo speed and acceleration. The
way of decelerating has a marked influence on the stabiligyastteristics: braking at the rear
wheel, braking at the front wheel, aerodynamic drag andngdup an incline influence the
lateral dynamics in different ways. The acceleration makescoefficients of the linearized
system time-varying.

A comparison of the derived equations and the results obtalvy a multibody dynamic
program is made, which shows a complete agreement. Theiens&an be used for several
purposes: firstly, they provide a non-trivial example of a+#mlonomic system that can be used
to illustrate some of the characteristic properties of eys$ of this kind; secondly, they can be
used as a test problem for the verification of multibody dyinammdes; thirdly, the simple model
already yields valuable insight in the effects of severateay parameters on the dynamics of a
bicycle.
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1 INTRODUCTION

In the literature, the linearized equations for the motiba bicycle have been the subject of
several studies. The classic article by Whipple [1] comrgidéhe motion of a bicycle on a level
road where all bodies are considered rigid and the contaetee® the wheels and the road is
described by holonomic constraints in the normal directiod non-holonomic constraints that
impose a condition of pure rolling in the tangential diren8. The wheels are further assumed
to have knife-edge rims. An overview of further contribuscand a verification of the linearized
equations can be found in [2].

Models for motorcycles can have a similar structure [3] haytmay include tire force mod-
els [4]. Further developments of models have been made, ichwdegrees of freedom were
added and more accurate tire force models were used. Ansixtegmnalytic model was pre-
sented by Koenen [5], which also considered stationaryssorg. In the last decade, the analy-
sis has shifted from analytically derived models to numerisymbolic models generated with
multibody dynamic programs [6, 7].

Here, the attention is focused on the dynamics of a bicycleaeriow-speed range, in which
structural flexibility and tire slips are of minor importan¢8]. Extensions are made to the
original bicycle model which do not increase the number ajrdes of freedom, so a more
accurate model can be obtained from which conclusions dheasily be extracted. A first
extension concerns the finite transverse radius of cuaiithe crown of the tire. Without loss
of generality, the outer shape of the wheel is considerectmimidal. Toroidal wheels have
already been considered in [9] in a kinematical analysik wi¢al constraints and in [6] as part
of a tire force model. A second extension considers the ateld bicycle. The acceleration
can be caused by a road gradient, by moments at the hubs adghand front wheel and by
aerodynamic drag.

The paper is organized as follows. First, the bicycle mosldiiscribed. Then the linearized
equations of motion for lateral perturbations of a nomioalitudinal motion are derived. The
results are compared with numerical results obtained froanukibody dynamic program. Fi-
nally, some interesting observations are made.

2 BICYCLE MODEL

Figure 1 shows the construction, the main dimensions and@dbedinates of the bicycle.
The model consists of four rigid bodies that are connectebyiute joints. The rear frame is
connected to the front fork at the steering head, the reaelwbeonnected to the rear frame
at the rear wheel hub and the front wheel is connected to tm fork at the front wheel hub.
The rider is assumed to be rigidly connected to the rear frahime bicycle moves on a rigid
plane road surface. The global coordinate system has &sdy-axis in the road surface and its
z-axis pointing downwards. In the reference configuratiothefbicycle, all four bodies have
their body-fixed coordinate axes aligned with the corregjpunaxes of the global coordinate
system, the wheels just touch the road surface and the aidhe rear frame is in the origin
of the global coordinate system. The wheels have a toraigalread surface with which they
can be in contact with the road surface. The lagaixis of either wheel is along the axis of
rotational symmetry and the local and z-axis are in the meridional plane of symmetry. The
wheel radius in this plane is or r; for the rear or front wheel respectively and the respective
transverse curvatures ape and p;. The rear frame has its local and z-axis in its plane
of symmetry and itg/-axis perpendicular to this plane; the centre of the rearelvhab has
coordinateg0, 0, —r,). The front fork coordinate system has its origin on the steeaxis at
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Figure 1: Bicycle model with coordinates and main dimension

the point(w + ¢,0,0) in the coordinate system of the rear frame, which is in thel saface
in the reference configuration; is the wheelbase andhe trail, so the front wheel touches the
road at the poinfw, 0,0) in the reference configuration; the front wheel hub is-at, 0, —r¢)

in the front fork coordinate system. The steering axis makeangle), the rake angle, with
the z-axis, as is indicated in Figure 1.

An arbitrary configuration of the bicycle can be describedhime generalized coordinates.
The position of the origin of the rear frame in the global aboate system can be described by
three Cartesian coordinates,y andz. Its orientation can be described by three angles. The
angle between the globalaxis and the line of intersection of the symmetry plane efrimar
frame with the road surface is the yaw anglewvhere a positive angle corresponds to a positive
rotation about the-axis. The lean angle is the angle that the symmetry plane makes with the
normal to the road surface, where a lean to the right yieldssitipe angle. The pitch angle
x is defined as the angle between the localxis and the line of intersection of the symmetry
plane with the road surface. The other three coordinatethanmelative angles of rotation at the
steering headj, and at the wheel hubg, andy;. Four of these coordinates are cyclic: the two
coordinates: andy and the wheel rotation angles and ;. The yaw angle) is also a cyclic
coordinate if the road surface is level.

The generalized coordinates are only independent if thgcledloats freely in the air. It
will be assumed, however, that the the two wheels remain maod with the road surface,
which imposes two holonomic constraints. The heawnd the pitch angle are considered
to be dependent coordinates, which are functions of thedegie¢ and the steering angle
Furthermore, no-slip conditions are imposed, which yieldrfnon-holonomic constraints on
the velocities. ldeally, the constraints impose zero lardinal and lateral slips at the contact
points. A small modification is made here for the lateral,siiporder to include the effects
of the so-called pneumatic trail. For a non-ideal contdw, linearized relation between the
lateral force and aligning moment and the lateral slip anunab spin rate of the wheel can be
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approximated by the relations

Fy = Cy(éy — tpwn) / Vi,

M, = Cyt,é,/ V.
Here, ¢, is the lateral slip velocity,w, is the normal spin rate, that is, the component of the
angular velocity of the wheel in the direction normal to tload surface), is the forward
velocity of the wheelF), is the lateral tyre forcel/, is the aligning moment;,, is the cornering
stiffness and, is the pneumatic trail. For pure sideslip, the lateral fdrae a line of action that

is a distancé,, behind the ideal point of contact. Hence, it seems to be @pjate to impose,
for low speeds, a combined zero-slip condition,

€, = éy +tpywn = 0. (2)

In general, the relation between the aligning moment, ttezdhforce and the normal spin rate
is

1)

M, = t,Fy 4 Cyt2wn V. (3)
The first term is automatically accounted for by the modifiedstraint (2), and the second
term can be added as a viscous damping term. The non-slipticonoh the longitudinal di-
rection does not need any modification. The independentitels are the rear wheel rotation
rate x,, the lean rateg, and the steering ratej. Instead of the rear wheel rotation rate, the
corresponding forward speed= —r,x will often be used.

The road surface may be inclined with respect to the direatiothe gravity field with an
anglea. This means that the gravity field has a compoment ¢ sin « in the globalz-direction
and a component, = g cos « in the globalz-direction.

The bicycle may be accelerated or braked by a moménbetween the rear frame and the
rear wheel and a momenit; between the front fork and the front wheel. Furthermore, r& pu
drag forceF} is assumed that acts at the pressure point of the rear frathbama direction
opposite to the absolute velocity of this pressure paiptwith a magnitude

Fy = 1panCaAv?. (4)

Here, p.;; is the density of the surrounding ary is the drag coefficientd is the frontal area
andv, is the magnitude of,,.

The geometric data, the masses and moments of inertia obthiebbdies and some addi-
tional parameters for an example bicycle are given in Tablehg inclination angle of the road,
the driving and braking moments and the forward velocityvamable.

2.1 Nominal solution

In the nominal solution, all out-of-plane motions vanishhiSrmeans that the coordinates
Y, ¥, ¢ and 3 are identically equal to zero. Also the dependent coords)ahe heave and
the pitch angley, are identically equal to zero, owing to the holonomic caaists. The only
dynamic degree of freedom is the forward motion, describeg.bwhile the forward velocity
and the rotation rate of the front wheel is directly couplethis motion ag: = v = —r,x, and
Xt = xu7:/r¢. Similarly for the virtual displacement&y = —r.dx, anddx; = dx, 7 /7¢.

For further reference, the total massy, and the coordinates of the centre of mass of the
bicycle as a whole(z, 0, z1), are defined as

mrp = My + Mg + My + My,
vy = (MW + My s + mgg) /M, (5)
21 = (—myery — mgTe + Myg 2o + Mg zg) /M.

4
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Symbol Meaning Value

w wheelbase 1.02m

t trail 0.08 m

A steer inclination angle 0.17 rad
g strength of gravity field 9.81 N/kg
T rear wheel radius 0.3m

Pr rear wheel crown radius 0.02m
m, rear wheel mass 2 kg

Irmc = ]rzz’ ]ryy

rear wheel mass moments of inertia0.0603, 0.12 kgm?

tor rear wheel pneumatic trail 0.018 m

Cyr rear wheel cornering stiffness 2500 N

T front wheel radius 0.35m

Dt front wheel crown radius 0.015m

mg front wheel mass 3 kg

Ityy = Itzz, Ity front wheel mass moments of inertia).1405, 0.28 kgm?
Tt front wheel pneumatic trail 0.012m

Cy front wheel cornering stiffness 1500 N

Tofy 2ot position of rear frame centre of mas$.3, —0.9 m

Mt rear frame mass 85 kg

Litgas Litwzy Lityys Lrez.  rear frame moments of inertia 9.2,2.4,11, 2.8 kgn?
Ty 26 position of front fork centre of mass 0.9, —0.7 m

me front fork mass 4 kg

Igrw, Igas, front fork moments of inertia 0.05892, —0.00756,
Ttyys Ttz 0.06, 0.00708 kgn?
Dair density of the air 1.2 kg/m?

CyA aerodynamic frontal area 0.4 m?

Tdy Zd coordinates of the pressure point 0.4, —0.8 m

Table 1: Parameter values for the example bicycle.

The equation of motion can now easily be derived as
(mT + Iryy/rr2 + Ifyy/rf2>@ = mrgy + M, /re + M /e — Fy, (6)

wherefly = %paierAU2. The expression between brackets on the left-hand sideecanlled
an effective mass, which contains a contribution due to tbenemts of inertia of the wheels.
The normal forces at the wheel contact points are easilyddum the momentum and angular
momentum balance of the bicycle as a whole as

1 . .
F., = - [mTzT(gx —0) +mr(w —27)g, — 2pFa + (Lyy /T + ]fyy/rf)v},

(7)
1 ) )
sz = E [ — mTzT(gm — U) + mrxrg, —+ Zde — (Iryy/rrr + Ifyy/Tf)’U] .

The longitudinal forces follow from the angular momentunfeinae of the wheels as

For = (Iryy/rrz)i} — M, /1, (8)
Fop = (Iyyy /7§)0 — Mg /7.

The normal forces might be needed for an estimation of themaéc trails.

5
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3 LINEARIZED EQUATIONS OF MOTION

In this section the linearized equations for the bicyclddteral perturbations of the nominal
in-plane motion are derived. Owing to the symmetry of theesys there is no linear coupling
between the lateral (out-of-plane) motion and the longitald(in-plane) motion. So the non-
linear longitudinal equation for the nominal motion is et and lateral perturbations about
this time-varying motion are considered. Successively, dbnfiguration, the velocities, the
virtual displacements and the accelerations are analySedlly the linearized equations are
derived with the principle of virtual work.

3.1 Configuration analysis

If linearized equations have to be derived, only a first-oeshalysis is needed. For the virtual
displacements, however, to be discussed later on, thesessipns appear in a linearized form
and second-order terms yield virtual displacements that baefficients containing terms that
are linear in the coordinates. When these are multiplieth Wit large longitudinal forces,
they contribute to the linearized equations. Because olirtear decoupling of the lateral and
longitudinal motion, the heave and pitch angle do not haveeat dependence on the lateral
coordinates. In the sequel, terms of higher than second ardelropped without further notice.

The rotation matrix for the rear frame can be expanded torgboader as

1 - 5v? — X+ vo
R, = (G 1—350* = 3¢°  —¢ : (9)
—X ¢ 1—1¢?
The z-coordinate of the centre of the rear wheel and its incloratingle are
for = 2 — (1 - %Cbz)rra Y = @ (10)

On the other hand, thecoordinate that follows from the holonomic constraint is

Zor = —Pr — (Tr - pr) Cos Yy =~ _(1 - % 2>T1” - %(bzpr’ (11)

from which it can be concluded that

= _%pr¢2- (12)

Note that this constraint does not involve the pitch angle.
The rotation matrix of the front fork with respect to the réame depends on the rake angle
A, which is not small. The expanded relative rotation masix i
1—13%cos’x —fcosA 3(?sin)cos A
Ry = [ cos A 1- %ﬁQ —(sin A ) 13)
1p%sinAcosA  fBsinA 1 — 13?%sin®\

The inclination angle;; of the front wheel can be found by transforming the lagalxis to the
global frame and considering itscomponent as; = ¢+ (3 sin A\. The centre of the front wheel
has local coordinates in the front fork coordinate system 0, —r¢). After transformation, its
z-component is

2o = z—wx—1e(1— %gbz — %ﬁ2 sin?\ — ¢Bsin \) — t3cos A(¢ + %ﬁsin A)

14
= —pr— (re = pr)(1 = 37F): (14)
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With Eq. (12), this gives the pitch angle

X = %[— 500" + 5p0(¢ + Bsin A)? — 13 cos A(¢ + 35 sin V)] (15)

The first two terms between the square brackets give theibaotitms due to the finite crown
radii of the tires and the last term is the contribution kndvam the analysis with knife-edge
wheels.

The positions of the other characteristic points can novilebe found. The rear frame
assembly, the combined rear frame and the rear wheel, hasmaand its centre of mass has
coordinategzy, 0, zg ), While the front fork assembly, the combined front fork areht wheel,
has massnr and its centre of mass has coordingtes — w — ¢, 0, zg):

MR, = My + My,
mg = mg + Mg,
IR = mrfxrf/mRu

16
ITp = (mfw + mgxg)/mp, ( )
2R = (_mrrr + mrfzrf)/mR7
ZF = (—mfrf + mffsz)/mp.

The position of the centre of mass of the rear frame assengalgrbes

4+ (1= Yo + (X + ¢¥o)zr
XoR = Yy + YR — O2r , (17)

z—xrr+ (1 — %gbz)zR
and likewise the position of the pressure point and the eesftthe rear wheel are
z+ (1= 3¢?)zq + (x + V)2 z— (X + o)r:
,  Xor = (18)

X4 = y+Yrg — dzq Y+ or,
= xta + (- 1) (L,

The centre of mass of the front fork assembly can be found as

z+ (1= 59%)ae + (X +¥)zr — B(Y + 58 cos Nug
XoF = Y + Yxp — dzr + Bur )
z—xzr+ (1 — %gb?)z’p + B(o + %ﬁ sin \)ug

(19)

whereur = (zp — w — t) cos A — zp sin A is the forward distance of the centre of mass of the
front fork assembly to the steering axis. The position ofdéetre of the front wheel is

z+ (1= 307w — (x + ¥o)re — B + 30 cos Nug
Xof = Y+ Yw + ore + Bug ; (20)

z—xw—(1- %gbz)rf + B(p + %,6’ sin A)uy

whereu; = —tcos A + resin A is the forward distance of the centre the front wheel to the
steering axis.
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3.2 \elocity analysis

The linear velocities expressed in components with redpettte global coordinate system
can easily be found by differentiating the expressionstergositions with respect to time. The
differentiation of Eq. (12) and (15) gives for the time datives of the dependent coordinates,

i = —pedo, (21)
X = % [[(pf — pr)@ + (prsin A — t cos )\)ﬁ]q'b + (prsin A — tcos A) (¢ + G sin )\)ﬁ} 22)
= (fy¢ = fuB)d = fu(9+ Bsin N5,
where _
f _ PP f :tcos)\—pfsm)\ (23)
P ’ m .

w w
fm is a kind of effective mechanical trail divided by the whesdb. The angular velocities are
most conveniently expressed in body-fixed components. lerdar frame assembly and the
front fork assembly this yields respectively

C'b $+BsinA
WR = (gbz/}jt)’(), W = ((gb%—ﬁsinAﬁb—ﬁngcosA%—X) (24)
¢ ¢+BCOSA

The angular velocities of the wheels are found by addipn@nd x; to the respective second
components.

The non-holonomic constraints at the wheels gives rise pend@encies in the velocities.
First, the constraints at the rear wheel are analysed. Tlbeityeof the centre of the rear wheel
can be found by differentiating the expression in Eq. (18hwespect to time,

& — (X + oY + o)
XOr = y + T’rgb' . (25)
Z+ oo

It is convenient to transform these components into thectiors in which the longitudinal and
lateral slips are defined, that is, for the rear wheel, thectiions parallel and normal to the
line of intersection of the plane of symmetry with the roadiace. This transformation only
involves the yaw angle, and yields the velocity and angular velocity of the rear @he

& —re(X + ¢) + ¥y ¢
Xor = —YE + g+ e o owi= Xt |- (26)
£+ 1009 b+ X

With the position of the contact point with respect to the alleentre(0, —(r, — p,)o, r;), the
velocity of the contact point becomes

( i’+TrXr—pr¢¢+¢y )
Xpe = — i+ . (27)
Z+ pepd

8
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Because of Eq. (21), the-component is identically equal to zero. The normal spie iat
—) — e = —1 + ¢v/ry, which yields the constraint for the lateral velocity,

Y+ (= 0) =0, = (6= )+t (28)

The constraint in the longitudinal direction then yields

&= =1 X + (e — tpﬂﬁﬁb =0+ (pd — tprwﬁb' (29)

For the front wheel, the local contact coordinate systertated with respect to the global
frame about the-axis by an angle) + 5 cos A. The velocity of the wheel centre in the global
coordinate system can be found by differentiating Eq. (20) a

T —rex — (WY + 11 + ufﬂ)w — rehgp — ur(¢ + B cos )\)ﬂ
Xof = G+ wih + chb + ug 3 ‘ (30)
£ —wx + (red + ueB)o + ug(¢p + Bsin )3

The velocity of the centre of the wheel and its angular véjadai the rotated frame becomes

(¢+ﬁcos)\)x+y+ww+rf¢+ufﬁ
2 —wx + (re¢ + urB)d + ug(¢ + Bsin \) 3

The angular velocity of the front wheel can be transformeithéosame frame as

T+ (Y + Beos Ny —rex — [re¢ + (up — w cos )\)ﬁ]@b + r¢ cos A
Xor = (31)

¢+ Bsin A
Wi = ()'(+)'(f'—ﬁ.gz'ﬁcos)\—(¢+ﬁsinA)BcosA). (32)
Y+ Bcos A+ (¢ + Gsin \)xs

With the coordinates of the contact point with respect tovtheel centre(0, —(ry — pr)(¢ +
Bsin \), r¢), the velocity of the contact point becomes

(¢+5COS)\)$+y+w¢—t6COS)\

Z—wx + [—tfcos A+ pe(¢p + [sin )\)]gb + (¢ + Bsin \)(—tcos A + pr sin)\)B
(33)
By substituting the time derivatives of Eq. (12) and (15)siseen that the speed in the normal
direction is zero, as it should be. From the lateral slip dxedtormal spin rate-¢) — 3 cos A —
(¢ + Bsin \)xs, it follows that the yaw rate is

( + (1 + Beos Ny + rexe + (w + 1) B cos X — pf(¢+581n)\)(¢+6cos>\) )
Vi = .

: 1 ' oty :

e A+ 2o — Py t+t A
J tprw_tpf“ﬁ‘”i + o= (@ st N) Elot (4 t)feos)]

= [fs0 + faB]v+ [,
where ; ; ;
pr pf pf .

f_(t—l—tpf)cos)\ f, = T’_r_r_f ; _COS)\—T—fsm)\ a5)

bt w—ty T tmtw—ty 7t tw—ty
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From this equation, it appears that for the lateral motiba,wheelbase is effectively modified
to t,, + w — t,r and the trail is effectively increased tot+ t,;. From the condition of zero
longitudinal slip, it follows that the rotation rate of theht wheel is

xf:—[:i:+ [B(w + ) cos A+ tye (1 + Beos N)] ¢ — pe(¢ + Bsin A) (¢ + Beos A) | (36)

Tt

With the known relations for the dependent velocities, theeity of the centre of mass of the
rear frame assembly can be found by differentiating thetjposin Eq. (17),

& — ar) + zr(X + 0 + 10)
Xor = Y+ 1rY — 2ro ; (37)
Z — IRX — ZROQ
and likewise for the velocity of the pressure point by takilegivatives of Eq. (18),
& — zq bt + 2a(X + b + )
Xq = Y+ — za9 : (38)
Z — XaX — 2409

The velocity of the centre of mass of the front frame is fougdlifferentiating Eq. (19),

& — wr bt + 20 (X + ¢ + $0) — up(BY +3) — upfcos A
XoF = Y+ xpY — 2zrd + upf ' (39)
Z—xpX — 2r09 + up(Bo + ¢F) + up[BBsin A

3.3 \Virtual displacements

The virtual displacements are now easily obtained from dpressions of the velocities:
because the system is scleronomic, the time derivatives reed to be replaced by virtual
displacements. This yields the relations between thealisariations,

0z = —pup09,

ox = (fp — fmB3)0¢ — fu(¢ + Bsin A)o 3,

0% = ~[fo¢ + faB]rdx: + [P,

0x = —1:0X:r + (P — L)) 07, (40)
0y = — (1) — 1) OX: + tpe01),

T 1 .
Sxr = T—f&xr o “ﬁ(tpr +w+t)cos A — pBsin A + (p, — pf)¢] o
—pe(¢+ Bsin X)d3 cos )\} :
The virtual displacement of the centre of mass of the reandrassembly is

dx — xrdY + 2R (0x + POV + Vi)
5XOR = 5’3/ + Z'R(S@b — ZR(SQS s
0z — TROX — 2RO

and likewise for the virtual displacement of the pressuiiatie

0 — 2qh6 + 2q(0X + PP + Vi)
(SXd ==

(41)

(5?/ + l'd&?b - Zd5¢
0z — xq0X — 2900

(42)

10
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The virtual displacement of the centre of mass of the fraanti is
0x — zpdY + zp(Ox + PO + Vo) — up B 5 cos A — up (B + Vi 3)
OXop = 0y + xpd) — zpd + upd . (43)
0z — xpdX — zrP0P + up(Bdd + 0 3) + up 3 sin A
The virtual rotations of the rear frame assembly and thet fiank assembly are

op dp+ 0 sin A
dpp=1| P00 +3dx |, 0¢pp=| (¢+FsinA)dyp — BopcosA+dx |. (44)
o 0 + dF cos A

3.4 Accelerations

The accelerations are found by taking a further derivatiith vespect to time of the veloci-
ties and angular velocities. There is no need to retain th@skorder terms, so the expressions
simplify considerably. The relations for the dependenteaations are found from differenti-
ating the expressions already found for the velocities, yields

Z=0,
x =0,
T =",
= (0= 26)0+ (= Zg)o + b (45)
b= [fob+ f3B]0 + [fs0 + faBv + fB,
. —0
Xt = T—f
The acceleration of the centre of mass of the rear frame is
v
XoR = ( i+ art) — 2R ) ; (46)
0
The acceleration of the centre of mass of the front framenalsisels found to be
v
Xop = ( 37+$F1L—ZF<5+UFB ) . (47)
0

The angular accelerations of the rear frame assembly anfdaitefork assembly are equal to
the time derivatives of the angular velocities in Eq. (24),

b ¢+ Bsin A
WR = 0|, wrp= 0 ) (48)
1& ¢+Bcos)\

3.5 Aerodynamic drag force

The aerodynamic drag force, in contrast to the gravity fodoes not have a constant mag-
nitude and direction. Due to the lateral velocity of the ptes point, a lateral component is
generated,

Foy = —Fa(y +2at — 2a0) /0. (49)
The longitudinal component is unchanged and the verticalmment is zero in a linear approx-
imation.

11
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3.6 Virtual work

The equations of motion are derived by collecting all cdmitions to the virtual work. The
terms involving the linear accelerations are easily oletaiinom

The contribution of the rotational part is

_6¢£ [IRwR + ]ryyj(-rey + wpRr X (IRwR + Iryyj(rey)} - 6Xr[ryy>.<-r

e . . . (51)
8¢y [Irwr + Iy Vre, + wr X (Trwr + TryyXeey )| — Xt leyy X

Here,e, is the second unit vector ardgl andIy are the moment of inertia tensors of the rear
frame assembly and the front fork assembly,

]R:c:c 0 Isz ]F:c:c 0 ]F:cz
In=| 0 I, 0 |, Ie=[ 0 I, 0 |, (52)
]Rmz 0 IRzz ]sz 0 ]Fzz

with the components

IR:mv = ligz + Irf:mv + mr(ﬁ“ + ZR)Z + mrf(zrf - ZR)27

IR:vz = Iyfxz — mr(Tr + ZR).TR - mrf(zrf - ZR) (xrf - .CL’R),

Iryy = Liyy + Ly + me[(r: 4 2r)* + 28] + mug[(2es — 28)° + (2er — 2r)7],
IRzz = Iy t+ ]rfzz + mrx%{ + mrf(xrf - xR)za

53
IFxx - If:c:c + ]ffxx + mf(’l"f + ZF)2 + mff(sz - ZF)za ( )
Ivys = Igp. + me(re + 2r)(w — xp) — mg (2 — 2r) (v — TF),
IFyy = ]fyy + Iﬂ‘yy + mf[(Tf + ZF)2 + (w — SL‘F)Z] + mff[<Zg — ZF)2 + (Z’ff — xF)2],
IFzz - ]fzz + [ffzz + mf(w - :EF)2 + mff(xff - xF)Z-
The gravity forces give a contribution
(mR(SXR + mF5XF)T(gxex + gzez), (54)

wheree, is the first anck, is the third unit vector. The aerodynamic drag force givesrar
bution
5xd(—Fdex + deey). (55)

The driving or braking moments give a contribution
—M,0x: — Mgdxs. (56)

Finally, the aligning moments in the contact points give atdbution

SYCyt2. (— U+ ?)/U + (0t + 63 cos N)Cyet2e [ — Y — [Fcos A+ (¢ + Bsin )\)E]/v. (57)

Tt
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3.7 Equations of motion

The equations of motion are now found by collecting all teand substituting the expres-
sions for the dependent coordinates and velocities. Foriatian ., the non-linear equation
(6) is retrieved. For the derivation of the lateral equatiaine variationjy, can be dropped.
Initially, d¢ is considered to be an independent variation and its relaiés is only imposed
later on. The large terms multiplied by small virtual vaioas appear in the- andz-direction
due to the gravity force, the acceleration and the drag fdfoethe moments, only the angular
acceleration of the wheels gives a contribution. In the#tirection, only the dependent vari-
ationsoy anddy need be considered, as well as the independent variatipasadss. Some
auxiliary quantities are defined as follows.

IT:E:E = IR:B:B + Ime + mRzlz{ + mFZ%7

Itg:, = Ijes + Ivze — mi(tor + 2r) 2R — mp (tor + TF) 25,
ITzz = IRzz + IFzz + mR<tpr + xR>2 + mF(tpr + xF)27
Tean = Ippe SiN? X + 215, sin A cos A + g, cos? X\ + mpu,
Ivzy = Ippe sin A + Ip,, COS A — mpzpurp,

IFz)\ = Isz sin A —+ IFzz Ccos \ -+ mp(tpr + .TF)UF,

Sz = MR2zr + Mp2y,

St =mgr(p: + frer + 2r) + me(pr + fror + 2r),

Sz = mR(tpr + l’R) + mp(tpr + Z'F), (58)
S; = MRIR + mrTr,

Sy = mpur,

Se = Lryy/ T,

St = Igyy /17,

Sy = S; + Sk,

Ca = 3pairCaA,

Cyr = Cyrt%m

Cye = Cyity.
The unreduced equations have the form
Mq + (vCy 4+ C_;/v)q + (Ko + 0K; + v’Kj)q = 0. (59)

Here,q = (¢, 3,v)* contains the non-cyclic coordinates for the lateral moéind the matrices
are

_ ITmm IF:B)\ ITmz

M= | Irexn Iran Irax | (60)

ITSCZ IFZ)\ ITzz

Sytpe /1 + Ca2? Spcos A =S, + Sy — Caza(ty + 14q)
C, = —S\tpr /T — St cos A 0 Sy + Sgsin A ,
—Sztpr/’f’r - SW - C’dZd(tpr + $d) _Sf sin A Sz + Cd(tpr + xd)2
(61)
0 0 0
Ci=[ 0 Cycos?x Cycosh |. (62)
0 C'yf cos A C'yr + C'yf
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The stiffness matrices are given in their components.

IE'O«M = _fpSwgr + Sg,vgm

[_(0@6 = fmeg:c - (fmS; + SA)gza

KO#WJ = _S:cg:ca

K()ﬁqb = fmSeGe — (fmS; + S)\)gz + M;ps cos )\/T’f - Cyf CoS )\/Tf,
Kops = (fmSasin X + Sy cos A)gy — (fmS? + Sx) sin Ag.

+Mipgsin A cos A/ — Cyp sin Acos A /ry, (63)
Koy = SxGa, i )
Koyg = —(Se +mrpe)ge + Mi(pr — pr) /18 — Cyu /1 — Cye /14,
Koys = Sxga + Mi[prsin X — (tp +w + 1) cos A] /rg — Cyssin A7y,
KO,ww = Szgac;
Kl,dxb = (fp + tpr/rr)Sw — fpSw,
Kl@ﬁ = _fm(Sx - Sw) + Sf COS )\,
K4y =0,
Ki g = — fm(Sz — Sw) — Satpe /1 — Sepe cos A/,
K pg = — fm(Se — Syw) sin A — Sy cos A — Sgpgsin A cos A/, (64)
Ki gy =0,
[_(LTWb = SSL‘ +mrpr — Sztpr/rr - (pf - pr)Sf/Tf — SW,
Kiyp = —Sx — Si[(re + pr) sin A — (t +w +t) cos A] /7y,
K1y = 0;
_ Caza(fp + tpe /1) —Cazafm 0
K2 = —C’dzdfm —C’dzdfm sinA 0 . (65)
Calpr + 24 — (tpr + Ta)tpe /7] 0 0

The expressions fap in Eq. (34) and) in Eq. (45) can now be substituted and the relation
for 9¢ in EqQ. (40) be used by addingtimes the third equation to the second equation in order
to obtain the final equations in the form

Mg + (#Cy + C_1/2)4* + (Ko + #K; + i”Ks)q" + K q* = 0, (66)

whereq?! = (¢,3)T are the dynamic degrees of freedom affd= (7)) is the non-cyclic
kinematic coordinate. The mass matrix is

IT:(::(: IFx)\ + f[sz
M = ) 67
( ]F:c)\ + f[sz ]FA)\ + QfIFZ)\ + f2ITzz ( )

The entries in the damping matrices are

Cigs = Satpe/rr + Cazi + folres,

CLW = Sf CosS A — f(SSL‘ - SW) - fodzd(tpr + l’d) + fgIT:cza

Cl’ﬁ(b - —S)\tpr/’f’r o Sf CO§ A— fSthr/’f’r - fSW - deZd(tpr + l’d) + f¢(]Fz)\ + f[Tzz)7
Clvﬁﬁ - fS)‘ + f2SZ + f2Cd(tP1” + xd)z + fﬁ(IFz)\ + fITzz>7

(68)
and
Co14p =0,
Co195 =0,
' 69
C_16 =0, (69)

C 15 = Cyrcos’] X+ 2fCyrcos A + f2(Cyr + Cye).
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The entries in the stiffness matrices are

Kogp = —[p5292 + 539z
K0,¢>ﬁ = fmSmg:B - (fmS,,z + S)\)gzu
Kogp = [(fm — f)Sz — fmrp]ge — (fmSL + Sx)g- + Mi[pr(cos A+ f) — fpi] /7
—fCy/re — Cye(cos A+ f)/re + fsCyrcos A+ fo f(Cr + Cyr), (70)
Kogp = [fmSesin A + Sx(cos A + [)]gz — (fmSL + Si) sin g
+M[prsin A(cos A + f) — f(tpr +w + 1) cos ]/

—Cyrsin Acos A1y — fCysin N1y + f5C,e cos A+ f5f(Cpr + Che);

KL(M’ = (fp + tpr/rr>5m - fpSw + fd>IT:Bz7
Kl#’ﬁ = _fm(Sx - SW) + Sf cos A + fﬁIT:cza
K175¢ = (f - fm)(Sx - SW) + fmTpr - fsztpr//rr
—Sxtpe /T — Sepe(cos X+ f) /e + fpeSe/re + fo(Ipan + flr22),
Ky g5 = — fm(Sz — Sy) sin A — Sy(cos A + f)
—Se[prsin A(cos A+ f) + fresin A — f(tpr +w +t) cos A/ + f3(Tean + fIT22),
(71)

Kapp = Caza(fp +tpe/12) — [6(Se — Sw) — foCaza(tp: + za),
K pp = —Cazafm — [3(Se — Sw) — fsCaza(tp + 2a),
Ko gy = —Cazafm + fCalpr + 2a — (tpr + a)tpe /7] (72)
+foSx + foSesin A+ fofS. + fof Caltpe + 2a)?, )
Kgﬁﬁ = —Cazqfmsin X\ + fﬁS)\ + fﬁSf sin A + fﬁfSZ + fngd(tpr + SL‘d)2 .
The coefficients oKX are .
Kid} = _S:Eg:m
K5, = (Sx+ fS.)9 -

The kinematic differential equation (34) for the yaw anglenust be added for a complete
specification of the system.

(73)

4 COMPARISON BETWEEN ANALYTIC AND NUMERIC EQUATIONS

The equations obtained in the previous section were cordpeith the results obtained with
the multibody dynamic program SPACAR, which allows mod&kst tcontain non-holonomic
constraints and provides an option for generating linedrequations [10]. A special element
for modelling the wheels with toroidal tread shape was dgyad along lines similar to the
element for the wheel—rail contact in railway vehicles [11]

The matrices for the linearized equations for the exampedie with parameters as in Ta-
ble 1, an inclination angle & and a braking moment af/; = —35 Nm on the front wheel are
as follows:

A [ 8081722000000000  2.752893 706 400 66 74)
~ | 2.75289370640066 0.34323425236612 )~
o _ ( —396733233082707 35.629 15328421826 75)
P77\ —0.99544891931855  1.992 73167005625 )
0 0
Car= ( 0 0.237873392539 10 ) ’ (76)
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K. — —774.604 923530537 —28.824163496 591 (77)
0~ —25.305268 525705 —0.071244904988 ]’

K. — —3.692636 25239569 34.372172084 87390 (78)
P77\ —1.260555 77159877 3.47469517087298 /)’

K. — 2.051 75774730945 75.373607 778119 36 (79)
27 | 0.08112808169405 3.06290266823959 |’

k[ 69.212074 85289892
K= ( 2.639816 55453266 )’ (80)

fo = 0.025062 656 641 60,
fa = 0.916 629 286 468 41, (81)
f=0.085279921539 14.

These results were confirmed by the numerical analysisingasome differences in the last
few digits. Also in some other cases, the results agreedmwitlimerical errors. This gives us
some confidence that both the analytic derivation of the tigpumand the implementation in
the program are correct.

5 DISCUSSION

Some of the implications of the modifications proposed is ffaper on the equations will
now be discussed. The mass matrix hardly changes: the sedealue off due to the pneu-
matic trail gives a slightly stronger coupling between e angle and the steering angle. The
part of the damping matrix that is proportional to the foravapeed is influenced by the aero-
dynamic drag, which gives a damping on the lean angle. Thredgpnping at the contact points
gives a damping term that is inversely proportional to thevéod speed; for very low speeds,
this damping dominates one entry in the damping matrix aachtimal spin at the front wheel
is effectively suppressed. It should be noted, howevet,ttha damping term becomes inac-
curate at low speeds and invalid at zero speed. The pneutraitecgive some small further
coupling terms to the mass distribution.

The finite transverse tire radius only modifies the constant @f the stiffness matrix, and
indirectly, through the drag, the part that is proportiaieethe square of the velocity. Because
the contact point shifts in lateral direction if the bicyctdls, the capsize instability is reduced
in strength.

The pneumatic trail influences some coupling terms. The nmggortant influence is the
increase of the factof due to the pneumatic trail of the front wheel, which is espicsignif-
icant if the mechanical trail is small.

The longitudinal forces that contribute to the acceleratbthe bicycle have a contribution
that is common to that of a driving torque at the rear wheehamadh is described by the matrix
K, and some additional influences. This shows that the way iaotwthe bicycle is accelerated
or decelerated has an influence on the lateral dynamics.rlicgar, driving the bicycle at the
rear wheel an simultaneously braking at the front wheel epkee speed constant can improve
the stability.

If there is a gradient, the yaw angle is no longer a cyclic dowte and the neutral stability
is lost: the bicycle has either a weak directional stabibitya weak directional instability. In
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most cases, it has a tendency to steer towards the downieititidin, which means that riding
down a slope leads to directional stability and riding upagpslleads to directional instability.
Effects on the other eigenmodes are generally more impotiawever.

6 CONCLUSIONS

The linearized equations for the lateral motion of a bicywee been extended to include
the effects of the finite transverse radius of the tires, treumatic trail and the spin damping at
the tire contact patches, driving and braking of the bicyaégodynamic drag and riding on an
incline. The analytically derived equations have been ameg with results from a multibody
dynamic program and a satisfactory agreement has been.fotiglis a strong indication that
the analytic derivation is correct and the toroidal wheagehbeen correctly implemented in
the program at least in the linear range. The model can befosddrther investigations into
the dynamics and control of bicycles and be further extemnd&uclude non-linear effects.
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