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Abstract. The linearized equations of motion for a bicycle of the usualconstruction travelling
straight ahead on a level surface have been the subject of several previous studies. In the
simplest models, the pure-rolling conditions of the knife-edge wheels are introduced as non-
holonomic constraints and the rider is assumed to be rigidlyattached to the rear frame. There
are two degrees of freedom for the lateral motion, the lean angle of the rear frame and the
steering angle. In the present paper, the model is extended in several ways, while the simplicity
of having only two degrees of freedom is retained. The extensions of the model comprise the
shape of the tires, which are allowed to have a finite transverse radius of curvature, the effect of
a pneumatic trail and a damping term due to normal spin at the tire contact patch, the gradient
of the road, the inclusion of driving and braking torques at the wheels and the aerodynamic
drag at the rear frame.

Owing to the gradient, the yaw angle of the rear frame is no longer a cyclic coordinate and
the kinematic differential equation for its evolution needs to be included. A further consequence
is that the stiffness matrix is no longer symmetric, even forzero speed and acceleration. The
way of decelerating has a marked influence on the stability characteristics: braking at the rear
wheel, braking at the front wheel, aerodynamic drag and riding up an incline influence the
lateral dynamics in different ways. The acceleration makesthe coefficients of the linearized
system time-varying.

A comparison of the derived equations and the results obtained by a multibody dynamic
program is made, which shows a complete agreement. The equations can be used for several
purposes: firstly, they provide a non-trivial example of a non-holonomic system that can be used
to illustrate some of the characteristic properties of systems of this kind; secondly, they can be
used as a test problem for the verification of multibody dynamic codes; thirdly, the simple model
already yields valuable insight in the effects of several system parameters on the dynamics of a
bicycle.
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1 INTRODUCTION

In the literature, the linearized equations for the motion of a bicycle have been the subject of
several studies. The classic article by Whipple [1] considered the motion of a bicycle on a level
road where all bodies are considered rigid and the contact between the wheels and the road is
described by holonomic constraints in the normal directionand non-holonomic constraints that
impose a condition of pure rolling in the tangential directions. The wheels are further assumed
to have knife-edge rims. An overview of further contributions and a verification of the linearized
equations can be found in [2].

Models for motorcycles can have a similar structure [3], or they may include tire force mod-
els [4]. Further developments of models have been made, in which degrees of freedom were
added and more accurate tire force models were used. An extensive analytic model was pre-
sented by Koenen [5], which also considered stationary cornering. In the last decade, the analy-
sis has shifted from analytically derived models to numericor symbolic models generated with
multibody dynamic programs [6, 7].

Here, the attention is focused on the dynamics of a bicycle inthe low-speed range, in which
structural flexibility and tire slips are of minor importance [8]. Extensions are made to the
original bicycle model which do not increase the number of degrees of freedom, so a more
accurate model can be obtained from which conclusions can still easily be extracted. A first
extension concerns the finite transverse radius of curvature of the crown of the tire. Without loss
of generality, the outer shape of the wheel is considered to be toroidal. Toroidal wheels have
already been considered in [9] in a kinematical analysis with ideal constraints and in [6] as part
of a tire force model. A second extension considers the accelerated bicycle. The acceleration
can be caused by a road gradient, by moments at the hubs of the rear and front wheel and by
aerodynamic drag.

The paper is organized as follows. First, the bicycle model is described. Then the linearized
equations of motion for lateral perturbations of a nominal longitudinal motion are derived. The
results are compared with numerical results obtained from amultibody dynamic program. Fi-
nally, some interesting observations are made.

2 BICYCLE MODEL

Figure 1 shows the construction, the main dimensions and thecoordinates of the bicycle.
The model consists of four rigid bodies that are connected byrevolute joints. The rear frame is
connected to the front fork at the steering head, the rear wheel is connected to the rear frame
at the rear wheel hub and the front wheel is connected to the front fork at the front wheel hub.
The rider is assumed to be rigidly connected to the rear frame. The bicycle moves on a rigid
plane road surface. The global coordinate system has itsx- andy-axis in the road surface and its
z-axis pointing downwards. In the reference configuration ofthe bicycle, all four bodies have
their body-fixed coordinate axes aligned with the corresponding axes of the global coordinate
system, the wheels just touch the road surface and the originof the rear frame is in the origin
of the global coordinate system. The wheels have a toroidal tire tread surface with which they
can be in contact with the road surface. The localy-axis of either wheel is along the axis of
rotational symmetry and the localx- andz-axis are in the meridional plane of symmetry. The
wheel radius in this plane isrr or rf for the rear or front wheel respectively and the respective
transverse curvatures areρr and ρf . The rear frame has its localx- and z-axis in its plane
of symmetry and itsy-axis perpendicular to this plane; the centre of the rear wheel hub has
coordinates(0, 0,−rr). The front fork coordinate system has its origin on the steering axis at
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Figure 1: Bicycle model with coordinates and main dimensions.

the point(w + t, 0, 0) in the coordinate system of the rear frame, which is in the road surface
in the reference configuration;w is the wheelbase andt the trail, so the front wheel touches the
road at the point(w, 0, 0) in the reference configuration; the front wheel hub is at(−t, 0,−rf)
in the front fork coordinate system. The steering axis makesan angleλ, the rake angle, with
thez-axis, as is indicated in Figure 1.

An arbitrary configuration of the bicycle can be described bynine generalized coordinates.
The position of the origin of the rear frame in the global coordinate system can be described by
three Cartesian coordinates,x, y andz. Its orientation can be described by three angles. The
angle between the globalx-axis and the line of intersection of the symmetry plane of the rear
frame with the road surface is the yaw angleψ, where a positive angle corresponds to a positive
rotation about thez-axis. The lean angleφ is the angle that the symmetry plane makes with the
normal to the road surface, where a lean to the right yields a positive angle. The pitch angle
χ is defined as the angle between the localx-axis and the line of intersection of the symmetry
plane with the road surface. The other three coordinates arethe relative angles of rotation at the
steering head,β, and at the wheel hubs,χr andχf . Four of these coordinates are cyclic: the two
coordinatesx andy and the wheel rotation anglesχr andχf . The yaw angleψ is also a cyclic
coordinate if the road surface is level.

The generalized coordinates are only independent if the bicycle floats freely in the air. It
will be assumed, however, that the the two wheels remain in contact with the road surface,
which imposes two holonomic constraints. The heavez and the pitch angleχ are considered
to be dependent coordinates, which are functions of the leanangleφ and the steering angleβ.
Furthermore, no-slip conditions are imposed, which yield four non-holonomic constraints on
the velocities. Ideally, the constraints impose zero longitudinal and lateral slips at the contact
points. A small modification is made here for the lateral slip, in order to include the effects
of the so-called pneumatic trail. For a non-ideal contact, the linearized relation between the
lateral force and aligning moment and the lateral slip and normal spin rate of the wheel can be
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approximated by the relations

Fy = Cy(ǫ̇y − tpωn)/Vx,

Mn = Cytpǫ̇y/Vx.
(1)

Here, ǫ̇y is the lateral slip velocity,ωn is the normal spin rate, that is, the component of the
angular velocity of the wheel in the direction normal to the road surface,Vx is the forward
velocity of the wheel,Fy is the lateral tyre force,Mn is the aligning moment,Cy is the cornering
stiffness andtp is the pneumatic trail. For pure sideslip, the lateral forcehas a line of action that
is a distancetp behind the ideal point of contact. Hence, it seems to be appropriate to impose,
for low speeds, a combined zero-slip condition,

ǫ̇′y = ǫ̇y + tpωn = 0. (2)

In general, the relation between the aligning moment, the lateral force and the normal spin rate
is

Mn = tpFy + Cyt
2
pωn/Vx. (3)

The first term is automatically accounted for by the modified constraint (2), and the second
term can be added as a viscous damping term. The non-slip condition in the longitudinal di-
rection does not need any modification. The independent velocities are the rear wheel rotation
rate χ̇r, the lean rate,̇φ, and the steering rate,̇β. Instead of the rear wheel rotation rate, the
corresponding forward speedv = −rrχ̇ will often be used.

The road surface may be inclined with respect to the direction of the gravity field with an
angleα. This means that the gravity field has a componentgx = g sinα in the globalx-direction
and a componentgz = g cosα in the globalz-direction.

The bicycle may be accelerated or braked by a momentMr between the rear frame and the
rear wheel and a momentMf between the front fork and the front wheel. Furthermore, a pure
drag forceFd is assumed that acts at the pressure point of the rear frame and has a direction
opposite to the absolute velocity of this pressure point,ẋp, with a magnitude

Fd = 1
2
ρairCdAv

2
p. (4)

Here,ρair is the density of the surrounding air,Cd is the drag coefficient,A is the frontal area
andvp is the magnitude oḟxp.

The geometric data, the masses and moments of inertia of the four bodies and some addi-
tional parameters for an example bicycle are given in Table 1. The inclination angle of the road,
the driving and braking moments and the forward velocity arevariable.

2.1 Nominal solution

In the nominal solution, all out-of-plane motions vanish. This means that the coordinates
y, ψ, φ andβ are identically equal to zero. Also the dependent coordinates, the heavez and
the pitch angleχ, are identically equal to zero, owing to the holonomic constraints. The only
dynamic degree of freedom is the forward motion, described by χr, while the forward velocity
and the rotation rate of the front wheel is directly coupled to this motion aṡx = v = −rrχ̇r and
χ̇f = χ̇rrr/rf . Similarly for the virtual displacements,δx = −rrδχr andδχf = δχrrr/rf .

For further reference, the total mass,mT, and the coordinates of the centre of mass of the
bicycle as a whole,(xT, 0, zT), are defined as

mT = mr +mf +mrf +mff ,
xT = (mfw +mrfxrf +mffxff)/mT,
zT = (−mrrr −mfrf +mrfzrf +mffzff)/mT.

(5)
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Symbol Meaning Value
w wheelbase 1.02 m
t trail 0.08 m
λ steer inclination angle 0.1π rad
g strength of gravity field 9.81 N/kg
rr rear wheel radius 0.3 m
ρr rear wheel crown radius 0.02 m
mr rear wheel mass 2 kg
Irxx = Irzz, Iryy rear wheel mass moments of inertia0.0603, 0.12 kgm2

tpr rear wheel pneumatic trail 0.018 m
Cyr rear wheel cornering stiffness 2500 N
rf front wheel radius 0.35 m
ρf front wheel crown radius 0.015 m
mf front wheel mass 3 kg
Ifxx = Ifzz, Ifyy front wheel mass moments of inertia0.1405, 0.28 kgm2

tpf front wheel pneumatic trail 0.012 m
Cyf front wheel cornering stiffness 1500 N
xrf , zrf position of rear frame centre of mass0.3, −0.9 m
mrf rear frame mass 85 kg
Irfxx, Irfxz, Irfyy, Irfzz rear frame moments of inertia 9.2, 2.4, 11, 2.8 kgm2

xff , zff position of front fork centre of mass 0.9, −0.7 m
mff front fork mass 4 kg
Iffxx, Iffxz, front fork moments of inertia 0.05892, −0.00756,
Iffyy, Iffzz 0.06, 0.00708 kgm2

ρair density of the air 1.2 kg/m3

CdA aerodynamic frontal area 0.4 m2

xd, zd coordinates of the pressure point 0.4, −0.8 m

Table 1: Parameter values for the example bicycle.

The equation of motion can now easily be derived as

(mT + Iryy/r
2
r + Ifyy/r

2
f )v̇ = mTgx +Mr/rr +Mf/rf − Fd, (6)

whereFd = 1
2
ρairCdAv

2. The expression between brackets on the left-hand side can be called
an effective mass, which contains a contribution due to the moments of inertia of the wheels.
The normal forces at the wheel contact points are easily found from the momentum and angular
momentum balance of the bicycle as a whole as

Fzr =
1

w

[

mTzT(gx − v̇) +mT(w − xT)gz − zpFd + (Iryy/rr + Ifyy/rf)v̇
]

,

Fzf =
1

w

[

−mTzT(gx − v̇) +mTxTgz + zpFd − (Iryy/rr + Ifyy/rf)v̇
]

.

(7)

The longitudinal forces follow from the angular momentum balance of the wheels as

Fxr = (Iryy/r
2
r )v̇ −Mr/rr,

Fxf = (Ifyy/r
2
f )v̇ −Mf/rf .

(8)

The normal forces might be needed for an estimation of the pneumatic trails.
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3 LINEARIZED EQUATIONS OF MOTION

In this section the linearized equations for the bicycle forlateral perturbations of the nominal
in-plane motion are derived. Owing to the symmetry of the system, there is no linear coupling
between the lateral (out-of-plane) motion and the longitudinal (in-plane) motion. So the non-
linear longitudinal equation for the nominal motion is retained and lateral perturbations about
this time-varying motion are considered. Successively, the configuration, the velocities, the
virtual displacements and the accelerations are analysed.Finally the linearized equations are
derived with the principle of virtual work.

3.1 Configuration analysis

If linearized equations have to be derived, only a first-order analysis is needed. For the virtual
displacements, however, to be discussed later on, these expressions appear in a linearized form
and second-order terms yield virtual displacements that have coefficients containing terms that
are linear in the coordinates. When these are multiplied with the large longitudinal forces,
they contribute to the linearized equations. Because of thelinear decoupling of the lateral and
longitudinal motion, the heave and pitch angle do not have a linear dependence on the lateral
coordinates. In the sequel, terms of higher than second order are dropped without further notice.

The rotation matrix for the rear frame can be expanded to second order as

Rr =





1 −
1
2
ψ2

−ψ χ + ψφ
ψ 1 −

1
2
φ2

−
1
2
ψ2

−φ
−χ φ 1 −

1
2
φ2



 . (9)

Thez-coordinate of the centre of the rear wheel and its inclination angle are

z0r = z − (1 −
1
2
φ2)rr, γr = φ. (10)

On the other hand, thez-coordinate that follows from the holonomic constraint is

z0r = −ρr − (rr − ρr) cos γr ≈ −(1 −
1
2
φ2)rr −

1
2
φ2ρr, (11)

from which it can be concluded that

z = −
1
2
ρrφ

2. (12)

Note that this constraint does not involve the pitch angle.
The rotation matrix of the front fork with respect to the rearframe depends on the rake angle

λ, which is not small. The expanded relative rotation matrix is

Rf/r =





1 −
1
2
β2 cos2λ −β cos λ 1

2
β2 sin λ cosλ

β cos λ 1 −
1
2
β2

−β sin λ
1
2
β2 sinλ cosλ β sin λ 1 −

1
2
β2 sin2λ



 . (13)

The inclination angleγf of the front wheel can be found by transforming the localy-axis to the
global frame and considering itsz-component asγf = φ+β sinλ. The centre of the front wheel
has local coordinates in the front fork coordinate system(−t, 0,−rf). After transformation, its
z-component is

z0f = z − wχ− rf(1 −
1
2
φ2

−
1
2
β2 sin2λ− φβ sinλ) − tβ cosλ(φ+ 1

2
β sin λ)

= −ρf − (rf − ρf)(1 −
1
2
γ2

f ).
(14)
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With Eq. (12), this gives the pitch angle

χ =
1

w

[

−
1
2
ρrφ

2 + 1
2
ρf(φ+ β sinλ)2

− tβ cosλ(φ+ 1
2
β sinλ)

]

(15)

The first two terms between the square brackets give the contributions due to the finite crown
radii of the tires and the last term is the contribution knownfrom the analysis with knife-edge
wheels.

The positions of the other characteristic points can now easily be found. The rear frame
assembly, the combined rear frame and the rear wheel, has massmR and its centre of mass has
coordinates(xR, 0, zR), while the front fork assembly, the combined front fork and front wheel,
has massmF and its centre of mass has coordinates(xF − w − t, 0, zF):

mR = mr +mrf ,
mF = mf +mff ,
xR = mrfxrf/mR,
xF = (mfw +mffxff)/mF,
zR = (−mrrr +mrfzrf)/mR,
zF = (−mfrf +mffzff)/mF.

(16)

The position of the centre of mass of the rear frame assembly becomes

x0R =





x+ (1 −
1
2
ψ2)xR + (χ+ ψφ)zR

y + ψxR − φzR
z − χxR + (1 −

1
2
φ2)zR



 , (17)

and likewise the position of the pressure point and the centre of the rear wheel are

xd =





x+ (1 − 1
2
ψ2)xd + (χ+ ψφ)zd

y + ψxd − φzd
z − χxd + (1 − 1

2
φ2)zd



 , x0r =





x− (χ+ ψφ)rr
y + φrr

z − (1 −
1
2
φ2)rr



 . (18)

The centre of mass of the front fork assembly can be found as

x0F =





x+ (1 −
1
2
ψ2)xF + (χ+ ψφ)zF − β(ψ + 1

2
β cosλ)uF

y + ψxF − φzF + βuF

z − χxF + (1 −
1
2
φ2)zF + β(φ+ 1

2
β sin λ)uF



 , (19)

whereuF = (xF − w − t) cosλ − zF sinλ is the forward distance of the centre of mass of the
front fork assembly to the steering axis. The position of thecentre of the front wheel is

x0f =





x+ (1 −
1
2
ψ2)w − (χ+ ψφ)rf − β(ψ + 1

2
β cosλ)uf

y + ψw + φrf + βuf

z − χw − (1 −
1
2
φ2)rf + β(φ+ 1

2
β sinλ)uf



 , (20)

whereuf = −t cosλ + rf sin λ is the forward distance of the centre the front wheel to the
steering axis.

7



J. P. Meijaard and A. L. Schwab

3.2 Velocity analysis

The linear velocities expressed in components with respectto the global coordinate system
can easily be found by differentiating the expressions for the positions with respect to time. The
differentiation of Eq. (12) and (15) gives for the time derivatives of the dependent coordinates,

ż = −ρrφφ̇, (21)

χ̇ =
1

w

[

[(ρf − ρr)φ+ (ρf sinλ− t cosλ)β]φ̇+ (ρf sin λ− t cosλ)(φ+ β sin λ)β̇
]

= (fρφ− fmβ)φ̇− fm(φ+ β sinλ)β̇,

(22)

where

fρ =
ρf − ρr

w
, fm =

t cosλ− ρf sinλ

w
. (23)

fm is a kind of effective mechanical trail divided by the wheelbase. The angular velocities are
most conveniently expressed in body-fixed components. For the rear frame assembly and the
front fork assembly this yields respectively

ωR =





φ̇

φψ̇ + χ̇

ψ̇



 , ωF =





φ̇+ β̇ sinλ

(φ+ β sin λ)ψ̇ − βφ̇ cosλ+ χ̇

ψ̇ + β̇ cosλ



 (24)

The angular velocities of the wheels are found by addingχ̇r and χ̇f to the respective second
components.

The non-holonomic constraints at the wheels gives rise to dependencies in the velocities.
First, the constraints at the rear wheel are analysed. The velocity of the centre of the rear wheel
can be found by differentiating the expression in Eq. (18) with respect to time,

ẋ0r =





ẋ− rr(χ̇+ φψ̇ + ψφ̇)

ẏ + rrφ̇

ż + rrφφ̇



 . (25)

It is convenient to transform these components into the directions in which the longitudinal and
lateral slips are defined, that is, for the rear wheel, the directions parallel and normal to the
line of intersection of the plane of symmetry with the road surface. This transformation only
involves the yaw angleψ, and yields the velocity and angular velocity of the rear wheel

ẋc
0r =





ẋ− rr(χ̇ + φψ̇) + ψẏ

−ψẋ+ ẏ + rrφ̇

ż + rrφφ̇



 , ωc
r =





φ̇
χ̇+ χ̇r

ψ̇ + φχ̇r



 . (26)

With the position of the contact point with respect to the wheel centre(0,−(rr − ρr)φ, rr), the
velocity of the contact point becomes

ẋrc =





ẋ+ rrχ̇r − ρrφψ̇ + ψẏ
−ψẋ+ ẏ

ż + ρrφφ̇



 . (27)
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Because of Eq. (21), thez-component is identically equal to zero. The normal spin rate is
−ψ̇ − φχ̇r = −ψ̇ + φv/rr, which yields the constraint for the lateral velocity,

−ψẋ+ ẏ + tpr(−ψ̇ − φχ̇r) = 0, ẏ = (ψ −

tpr

rr
φ)v + tprψ̇. (28)

The constraint in the longitudinal direction then yields

ẋ = −rrχ̇r + (ρrφ− tprψ)ψ̇ = v + (ρrφ− tprψ)ψ̇. (29)

For the front wheel, the local contact coordinate system is rotated with respect to the global
frame about thez-axis by an angleψ + β cos λ. The velocity of the wheel centre in the global
coordinate system can be found by differentiating Eq. (20) as

ẋ0f =





ẋ− rf χ̇− (wψ + rfφ+ ufβ)ψ̇ − rfψφ̇− uf(ψ + β cosλ)β̇

ẏ + wψ̇ + rf φ̇+ uf β̇

ż − wχ̇+ (rfφ+ ufβ)φ̇+ uf(φ+ β sin λ)β̇



 . (30)

The velocity of the centre of the wheel and its angular velocity in the rotated frame becomes

ẋc
0f =





ẋ+ (ψ + β cosλ)ẏ − rf χ̇− [rfφ+ (uf − w cosλ)β]ψ̇ + rfβ cosλφ̇

−(ψ + β cosλ)ẋ+ ẏ + wψ̇ + rf φ̇+ uf β̇

ż − wχ̇+ (rfφ+ ufβ)φ̇+ uf(φ+ β sin λ)β̇



 . (31)

The angular velocity of the front wheel can be transformed tothe same frame as

ωc
f =





φ̇+ β̇ sinλ

χ̇+ χ̇f − βφ̇ cosλ− (φ+ β sinλ)β̇ cos λ

ψ̇ + β̇ cosλ+ (φ+ β sinλ)χ̇f



 . (32)

With the coordinates of the contact point with respect to thewheel centre,(0,−(rf − ρf)(φ +
β sin λ), rf), the velocity of the contact point becomes

vfc =





ẋ+ (ψ + β cosλ)ẏ + rf χ̇f + (w + t)βψ̇ cosλ− ρf(φ+ β sinλ)(ψ̇ + β̇ cosλ)

−(ψ + β cosλ)ẋ+ ẏ + wψ̇ − tβ̇ cosλ

ż − wχ̇+ [−tβ cosλ+ ρf(φ+ β sin λ)]φ̇+ (φ+ β sin λ)(−t cosλ+ ρf sinλ)β̇



 .

(33)
By substituting the time derivatives of Eq. (12) and (15), itis seen that the speed in the normal
direction is zero, as it should be. From the lateral slip and the normal spin rate−ψ̇ − β̇ cosλ−
(φ+ β sinλ)χ̇f , it follows that the yaw rate is

ψ̇ =
1

tpr + w − tpf

[

[

β cosλ +
tpr

rr
φ− (φ+ β sinλ)

tpf

rf

]

v + (t+ tpf)β̇ cosλ
]

=
[

fφφ+ fββ
]

v + fβ̇,

(34)

where

f =
(t+ tpf) cosλ

tpr + w − tpf

, fφ =

tpr

rr
−

tpf

rf
tpr + w − tpf

, fβ =
cosλ−

tpf

rf
sinλ

tpr + w − tpf

. (35)
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From this equation, it appears that for the lateral motion, the wheelbase is effectively modified
to tpr + w − tpf and the trail is effectively increased tot + tpf . From the condition of zero
longitudinal slip, it follows that the rotation rate of the front wheel is

χ̇f =
−1

rf

[

ẋ+
[

β(w + t) cosλ+ tpr(ψ + β cosλ)
]

ψ̇ − ρf(φ+ β sinλ)(ψ̇ + β̇ cosλ)
]

. (36)

With the known relations for the dependent velocities, the velocity of the centre of mass of the
rear frame assembly can be found by differentiating the position in Eq. (17),

ẋ0R =





ẋ− xRψψ̇ + zR(χ̇+ φψ̇ + ψφ̇)

ẏ + xRψ̇ − zRφ̇

ż − xRχ̇− zRφφ̇



 , (37)

and likewise for the velocity of the pressure point by takingderivatives of Eq. (18),

ẋd =





ẋ− xdψψ̇ + zd(χ̇+ φψ̇ + ψφ̇)

ẏ + xdψ̇ − zdφ̇

ż − xdχ̇− zdφφ̇



 . (38)

The velocity of the centre of mass of the front frame is found by differentiating Eq. (19),

ẋ0F =





ẋ− xFψψ̇ + zF(χ̇+ φψ̇ + ψφ̇) − uF(βψ̇ + ψβ̇) − uFββ̇ cos λ

ẏ + xFψ̇ − zFφ̇+ uFβ̇

ż − xFχ̇− zFφφ̇+ uF(βφ̇+ φβ̇) + uFββ̇ sinλ



 . (39)

3.3 Virtual displacements

The virtual displacements are now easily obtained from the expressions of the velocities:
because the system is scleronomic, the time derivatives only need to be replaced by virtual
displacements. This yields the relations between the virtual variations,

δz = −ρrφδφ,

δχ = (fρφ− fmβ)δφ− fm(φ+ β sin λ)δβ,

δψ = −

[

fφφ+ fββ
]

rrδχr + fδβ,

δx = −rrδχr + (ρrφ− tprψ)δψ,

δy = −(rrψ − tprφ)δχr + tprδψ,

δχf =
rr
rf
δχr −

1

rf

[

[

β(tpr + w + t) cosλ− ρfβ sinλ+ (ρr − ρf)φ
]

δψ

−ρf(φ+ β sinλ)δβ cos λ
]

.

(40)

The virtual displacement of the centre of mass of the rear frame assembly is

δx0R =





δx− xRψδψ + zR(δχ+ φδψ + ψδφ)
δy + xRδψ − zRδφ
δz − xRδχ− zRφδφ



 , (41)

and likewise for the virtual displacement of the pressure point is

δxd =





δx− xdψδψ + zd(δχ+ φδψ + ψδφ)
δy + xdδψ − zdδφ
δz − xdδχ− zdφδφ



 . (42)

10
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The virtual displacement of the centre of mass of the front frame is

δx0F =





δx− xFψδψ + zF(δχ+ φδψ + ψδφ) − uFβδβ cosλ− uF(βδψ + ψδβ)
δy + xFδψ − zFδφ+ uFδβ

δz − xFδχ− zFφδφ+ uF(βδφ+ φδβ) + uFβδβ sinλ



 . (43)

The virtual rotations of the rear frame assembly and the front fork assembly are

δφR =





δφ
φδψ + δχ

δψ



 , δφF =





δφ+ δβ sinλ
(φ+ β sinλ)δψ − βδφ cosλ+ δχ

δψ + δβ cosλ



 . (44)

3.4 Accelerations

The accelerations are found by taking a further derivative with respect to time of the veloci-
ties and angular velocities. There is no need to retain the second-order terms, so the expressions
simplify considerably. The relations for the dependent accelerations are found from differenti-
ating the expressions already found for the velocities; this yields

z̈ = 0,

χ̈ = 0,

ẍ = v̇,

ÿ = (ψ −

tpr

rr
φ)v̇ + (ψ̇ −

tpr

rr
φ̇)v + tprψ̈,

ψ̈ =
[

fφφ+ fββ
]

v̇ +
[

fφφ̇+ fββ̇
]

v + fβ̈,

χ̈f =
−v̇

rf

(45)

The acceleration of the centre of mass of the rear frame is

ẍ0R =





v̇

ÿ + xRψ̈ − zRφ̈
0



 , (46)

The acceleration of the centre of mass of the front frame assembly is found to be

ẍ0F =





v̇

ÿ + xFψ̈ − zFφ̈+ uFβ̈
0



 . (47)

The angular accelerations of the rear frame assembly and thefront fork assembly are equal to
the time derivatives of the angular velocities in Eq. (24),

ω̇R =





φ̈
0

ψ̈



 , ω̇F =





φ̈+ β̈ sinλ
0

ψ̈ + β̈ cosλ



 . (48)

3.5 Aerodynamic drag force

The aerodynamic drag force, in contrast to the gravity force, does not have a constant mag-
nitude and direction. Due to the lateral velocity of the pressure point, a lateral component is
generated,

Fdy = −Fd(ẏ + xdψ̇ − zdφ̇)/v . (49)

The longitudinal component is unchanged and the vertical component is zero in a linear approx-
imation.

11
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3.6 Virtual work

The equations of motion are derived by collecting all contributions to the virtual work. The
terms involving the linear accelerations are easily obtained from

−mRδx
T
RẍR −mFδx

T
F ẍF. (50)

The contribution of the rotational part is

−δφT
R

[

IRω̇R + Iryyχ̈rey + ωR ×

(

IRωR + Iryyχ̇rey
)]

− δχrIryyχ̈r

−δφT
F

[

IFω̇F + Ifyyχ̈fey + ωF ×

(

IFωF + Ifyyχ̇fey
)]

− δχfIfyyχ̈f .
(51)

Here,ey is the second unit vector andIR andIF are the moment of inertia tensors of the rear
frame assembly and the front fork assembly,

IR =





IRxx 0 IRxz
0 IRyy 0
IRxz 0 IRzz



 , IF =





IFxx 0 IFxz
0 IRyy 0
IFxz 0 IFzz



 , (52)

with the components

IRxx = Irxx + Irfxx +mr(rr + zR)2 +mrf(zrf − zR)2,
IRxz = Irfxz −mr(rr + zR)xR −mrf(zrf − zR)(xrf − xR),
IRyy = Iryy + Irfyy +mr[(rr + zR)2 + x2

R] +mrf [(zrf − zR)2 + (xrf − xR)2],
IRzz = Irzz + Irfzz +mrx

2
R +mrf(xrf − xR)2,

IFxx = Ifxx + Iffxx +mf(rf + zF)2 +mff(zff − zF)2,
IFxz = Iffxz +mf(rf + zF)(w − xF) −mff(zff − zF)(xff − xF),
IFyy = Ifyy + Iffyy +mf [(rf + zF)2 + (w − xF)2] +mff [(zff − zF)2 + (xff − xF)2],
IFzz = Ifzz + Iffzz +mf(w − xF)2 +mff(xff − xF)2.

(53)

The gravity forces give a contribution

(mRδxR +mFδxF)T (gxex + gzez), (54)

whereex is the first andez is the third unit vector. The aerodynamic drag force gives a contri-
bution

δxd(−Fdex + Fdyey). (55)

The driving or braking moments give a contribution

−Mrδχr −Mfδχf . (56)

Finally, the aligning moments in the contact points give a contribution

δψCyrt
2
pr

(

− ψ̇ +
φv

rr

)

/v + (δψ + δβ cosλ)Cyft
2
pf

[

− ψ̇ − β̇ cosλ+ (φ+ β sinλ)
v

rf

]

/v. (57)
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3.7 Equations of motion

The equations of motion are now found by collecting all termsand substituting the expres-
sions for the dependent coordinates and velocities. For a variation δχr, the non-linear equation
(6) is retrieved. For the derivation of the lateral equations, the variationδχr can be dropped.
Initially, δψ is considered to be an independent variation and its relation to δβ is only imposed
later on. The large terms multiplied by small virtual variations appear in thex- andz-direction
due to the gravity force, the acceleration and the drag force. For the moments, only the angular
acceleration of the wheels gives a contribution. In the lateral direction, only the dependent vari-
ationsδy andδψ need be considered, as well as the independent variationsδφ andδβ. Some
auxiliary quantities are defined as follows.

ITxx = IRxx + IFxx +mRz
2
R +mFz

2
F,

ITxz = IRxz + IFxz −mR(tpr + xR)zR −mF(tpr + xF)zF,
ITzz = IRzz + IFzz +mR(tpr + xR)2 +mF(tpr + xF)2,
IFλλ = IFxx sin2λ+ 2IFxz sinλ cosλ+ IFzz cos2λ+mFu

2
F,

IFxλ = IFxx sinλ+ IFxz cosλ−mFzFuF,
IFzλ = IFxz sinλ+ IFzz cosλ+mF(tpr + xF)uF,
Sx = mRzR +mFzF,
S ′

x = mR(ρr + fρxR + zR) +mF(ρr + fρxF + zF),
Sz = mR(tpr + xR) +mF(tpr + xF),
S ′

z = mRxR +mFxF,
Sλ = mFuF,
Sr = Iryy/rr,
Sf = Ifyy/rf ,
Sw = Sr + Sf ,
C̄d = 1

2
ρairCdA,

C̄yr = Cyrt
2
pr,

C̄yf = Cyft
2
pf .

(58)

The unreduced equations have the form

M̄¨̄q + (vC̄1 + C̄−1/v) ˙̄q + (K̄0 + v̇K̄1 + v2K̄2)q̄ = 0. (59)

Here,q̄ = (φ, β, ψ)T contains the non-cyclic coordinates for the lateral motionand the matrices
are

M̄ =





ITxx IFxλ ITxz
IFxλ IFλλ IFzλ
ITxz IFzλ ITzz



 , (60)

C̄1 =





Sxtpr/rr + C̄dz
2
d Sf cos λ −Sx + Sw − C̄dzd(tpr + xd)

−Sλtpr/rr − Sf cosλ 0 Sλ + Sf sinλ
−Sztpr/rr − Sw − C̄dzd(tpr + xd) −Sf sinλ Sz + C̄d(tpr + xd)

2



 ,

(61)

C̄−1 =





0 0 0
0 C̄yf cos2λ C̄yf cosλ
0 C̄yf cos λ C̄yr + C̄yf



 . (62)
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The stiffness matrices are given in their components.

K̄0,φφ = −fρSxgx + S ′

xgz,
K̄0,φβ = fmSxgx − (fmS

′

z + Sλ)gz,
K̄0,φψ = −Sxgx,
K̄0,βφ = fmSxgx − (fmS

′

z + Sλ)gz +Mfρf cosλ/rf − C̄yf cos λ/rf ,
K̄0,ββ = (fmSx sin λ+ Sλ cosλ)gx − (fmS

′

z + Sλ) sinλgz
+Mfρf sinλ cosλ/rf − C̄yf sin λ cosλ/rf ,

K̄0,βψ = Sλgx,
K̄0,ψφ = −(Sx +mTρr)gx +Mf(ρf − ρr)/rf − C̄yr/rr − C̄yf/rf ,
K̄0,ψβ = Sλgx +Mf [ρf sinλ− (tpr + w + t) cosλ]/rf − C̄yf sinλ/rf ,
K̄0,ψψ = Szgx;

(63)

K̄1,φφ = (fρ + tpr/rr)Sx − fρSw,
K̄1,φβ = −fm(Sx − Sw) + Sf cosλ,
K̄1,φψ = 0,
K̄1,βφ = −fm(Sx − Sw) − Sλtpr/rr − Sfρf cosλ/rf ,
K̄1,ββ = −fm(Sx − Sw) sinλ− Sλ cos λ− Sfρf sin λ cosλ/rf ,
K̄1,βψ = 0,
K̄1,ψφ = Sx +mTρr − Sztpr/rr − (ρf − ρr)Sf/rf − Sw,
K̄1,ψβ = −Sλ − Sf [(rf + ρf) sinλ− (tpr + w + t) cosλ]/rf ,
K̄1,ψψ = 0;

(64)

K̄2 =





C̄dzd(fρ + tpr/rr) −C̄dzdfm 0
−C̄dzdfm −C̄dzdfm sin λ 0

C̄d[ρr + zd − (tpr + xd)tpr/rr] 0 0



 . (65)

The expressions foṙψ in Eq. (34) andψ̈ in Eq. (45) can now be substituted and the relation
for δψ in Eq. (40) be used by addingf times the third equation to the second equation in order
to obtain the final equations in the form

Mq̈d + (ẋC1 + C−1/ẋ)q̇
d + (K0 + ẍK1 + ẋ2K2)q

d + Kkqk = 0, (66)

whereqd = (φ, β)T are the dynamic degrees of freedom andqk = (ψ) is the non-cyclic
kinematic coordinate. The mass matrix is

M =

(

ITxx IFxλ + fITxz
IFxλ + fITxz IFλλ + 2fIFzλ + f 2ITzz

)

. (67)

The entries in the damping matrices are

C1,φφ = Sxtpr/rr + C̄dz
2
d + fφITxz,

C1,φβ = Sf cos λ− f(Sx − Sw) − fC̄dzd(tpr + xd) + fβITxz,
C1,βφ = −Sλtpr/rr − Sf cos λ− fSztpr/rr − fSw − fC̄dzd(tpr + xd) + fφ(IFzλ + fITzz),
C1,ββ = fSλ + f 2Sz + f 2C̄d(tpr + xd)

2 + fβ(IFzλ + fITzz),
(68)

and
C−1,φφ = 0,
C−1,φβ = 0,
C−1,βφ = 0,
C−1,ββ = C̄yf cos2λ+ 2fC̄yf cosλ+ f 2(C̄yr + C̄yf).

(69)
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The entries in the stiffness matrices are

K0,φφ = −fρSxgx + S ′

xgz,
K0,φβ = fmSxgx − (fmS

′

z + Sλ)gz,
K0,βφ = [(fm − f)Sx − fmTρr]gx − (fmS

′

z + Sλ)gz +Mf [ρf(cos λ+ f) − fρr]/rf
−fC̄yr/rr − C̄yf(cosλ + f)/rf + fφC̄yf cosλ+ fφf(C̄yr + C̄yf),

K0,ββ = [fmSx sinλ+ Sλ(cosλ+ f)]gx − (fmS
′

z + Sλ) sinλgz
+Mf [ρf sin λ(cosλ+ f) − f(tpr + w + t) cosλ]/rf
−C̄yf sin λ cosλ/rf − fC̄yf sin λ/rf + fβC̄yf cosλ+ fβf(C̄yr + C̄yf);

(70)

K1,φφ = (fρ + tpr/rr)Sx − fρSw + fφITxz,
K1,φβ = −fm(Sx − Sw) + Sf cos λ+ fβITxz,
K1,βφ = (f − fm)(Sx − Sw) + fmTρr − fSztpr/rr

−Sλtpr/rr − Sfρf(cosλ+ f)/rf + fρrSf/rf + fφ(IFzλ + fITzz),
K1,ββ = −fm(Sx − Sw) sinλ− Sλ(cosλ+ f)

−Sf [ρf sinλ(cosλ+ f) + frf sin λ− f(tpr + w + t) cosλ]/rf + fβ(IFzλ + fITzz),
(71)

K2,φφ = C̄dzd(fρ + tpr/rr) − fφ(Sx − Sw) − fφC̄dzd(tpr + xd),
K2,φβ = −C̄dzdfm − fβ(Sx − Sw) − fβC̄dzd(tpr + xd),
K2,βφ = −C̄dzdfm + fC̄d[ρr + zd − (tpr + xd)tpr/rr]

+fφSλ + fφSf sin λ+ fφfSz + fφfC̄d(tpr + xd)
2,

K2,ββ = −C̄dzdfm sin λ+ fβSλ + fβSf sinλ + fβfSz + fβfC̄d(tpr + xd)
2 .

(72)

The coefficients ofKk are
Kk
φψ = −Sxgx,

Kk
βψ = (Sλ + fSz)gx .

(73)

The kinematic differential equation (34) for the yaw angleψ must be added for a complete
specification of the system.

4 COMPARISON BETWEEN ANALYTIC AND NUMERIC EQUATIONS

The equations obtained in the previous section were compared with the results obtained with
the multibody dynamic program SPACAR, which allows models that contain non-holonomic
constraints and provides an option for generating linearized equations [10]. A special element
for modelling the wheels with toroidal tread shape was developed along lines similar to the
element for the wheel–rail contact in railway vehicles [11].

The matrices for the linearized equations for the example bicycle with parameters as in Ta-
ble 1, an inclination angle of5◦ and a braking moment ofMf = −35 Nm on the front wheel are
as follows:

M =

(

80.817 220 000 000 00 2.752 893 706 400 66
2.752 893 706 400 66 0.343 234 252 366 12

)

, (74)

C1 =

(

−3.967 332 330 827 07 35.629 153 284 218 26
−0.995 448 919 318 55 1.992 731 670 056 25

)

, (75)

C−1 =

(

0 0
0 0.237 873 392 539 10

)

, (76)
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K0 =

(

−774.604 923 530 537 −28.824 163 496 591
−25.305 268 525 705 −0.071 244 904 988

)

, (77)

K1 =

(

−3.692 636 252 395 69 34.372 172 084 873 90
−1.260 555 771 598 77 3.474 695 170 872 98

)

, (78)

K2 =

(

2.051 757 747 309 45 75.373 607 778 119 36
0.081 128 081 694 05 3.062 902 668 239 59

)

, (79)

Kk =

(

69.212 074 852 898 92
2.639 816 554 532 66

)

, (80)

fφ = 0.025 062 656 641 60,

fβ = 0.916 629 286 468 41,

f = 0.085 279 921 539 14 .

(81)

These results were confirmed by the numerical analysis, barring some differences in the last
few digits. Also in some other cases, the results agreed within numerical errors. This gives us
some confidence that both the analytic derivation of the equations and the implementation in
the program are correct.

5 DISCUSSION

Some of the implications of the modifications proposed in this paper on the equations will
now be discussed. The mass matrix hardly changes: the increased value off due to the pneu-
matic trail gives a slightly stronger coupling between the lean angle and the steering angle. The
part of the damping matrix that is proportional to the forward speed is influenced by the aero-
dynamic drag, which gives a damping on the lean angle. The spin damping at the contact points
gives a damping term that is inversely proportional to the forward speed; for very low speeds,
this damping dominates one entry in the damping matrix and the normal spin at the front wheel
is effectively suppressed. It should be noted, however, that this damping term becomes inac-
curate at low speeds and invalid at zero speed. The pneumatictrails give some small further
coupling terms to the mass distribution.

The finite transverse tire radius only modifies the constant part of the stiffness matrix, and
indirectly, through the drag, the part that is proportionalto the square of the velocity. Because
the contact point shifts in lateral direction if the bicyclerolls, the capsize instability is reduced
in strength.

The pneumatic trail influences some coupling terms. The mostimportant influence is the
increase of the factorf due to the pneumatic trail of the front wheel, which is especially signif-
icant if the mechanical trail is small.

The longitudinal forces that contribute to the acceleration of the bicycle have a contribution
that is common to that of a driving torque at the rear wheel andwhich is described by the matrix
K1, and some additional influences. This shows that the way in which the bicycle is accelerated
or decelerated has an influence on the lateral dynamics. In particular, driving the bicycle at the
rear wheel an simultaneously braking at the front wheel to keep the speed constant can improve
the stability.

If there is a gradient, the yaw angle is no longer a cyclic coordinate and the neutral stability
is lost: the bicycle has either a weak directional stabilityor a weak directional instability. In
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most cases, it has a tendency to steer towards the downhill direction, which means that riding
down a slope leads to directional stability and riding up a slope leads to directional instability.
Effects on the other eigenmodes are generally more important, however.

6 CONCLUSIONS

The linearized equations for the lateral motion of a bicyclehave been extended to include
the effects of the finite transverse radius of the tires, the pneumatic trail and the spin damping at
the tire contact patches, driving and braking of the bicycle, aerodynamic drag and riding on an
incline. The analytically derived equations have been compared with results from a multibody
dynamic program and a satisfactory agreement has been found. This is a strong indication that
the analytic derivation is correct and the toroidal wheels have been correctly implemented in
the program at least in the linear range. The model can be usedfor further investigations into
the dynamics and control of bicycles and be further extendedto include non-linear effects.
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