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ABSTRACT

Recently a novel concept, called the laddermill, was brought
forward in order to exploit the high energy flux of wind at
high altitudes. This device consists of a number of wings
connected by cables. A way to model this device is presented,
which considers the wings as rigid bodies and the parts of the
cables between them as flexible. A special truss element for
modelling cables is described. The aerodynamic forces are
described as is usual for cables and aircraft. An application
to a preliminary design concept for a laddermill is presented.

INTRODUCTION

Because the energy flux of the wind increases considerably
with increasing altitude, it has an advantage to place wind
turbines as high as possible. A novel invention, named the
laddermill (patent Netherlands No 1004508, 12 November
1996, inventor W.J. Ockels, registered in the US and the Euro-
pean Common Market) points to a possible way to exploit this
energy source. The laddermill (Fig. 1) is a self-supporting
system that consists of one or more endless cables connected
to a series of lifting bodies, henceforward called wings, with
a high lift that move up and a series of wings with low lift
that move down. This results in a difference in the tensile
forces of the cable parts at the ground, which can drive an
energy generator. The difference in lift of the ascending
and descending wings is obtained by controlling the angles
of attack of the two sets of wings. The device can be de-
signed to reach several levels of altitude and heights up to the
tropopause appear to be technically feasible.

The extreme slenderness of the structure makes a thor-
ough dynamic analysis of paramount importance. Concepts
from the finite element method are used for the modelling.
The cables are modelled by truss elements, while the wings
are considered as rigid bodies. The nodal points are chosen
in the centres of mass of the bodies. The trusses can have
eccentric rigid connections to these nodal points and the in-
fluence of sag due to gravity and wind loading are taken
into account, which results in a tensile force in the trusses
for almost all conditions and a smooth transition from slack
to tight conditions. The equations of motion for the wings
are formulated with respect to body-fixed reference systems,
which follows the common practice in flight dynamics and

Fig. 1: Laddermill concept.

allows the use of available data for the aerodynamic forces.
The equations of motion are integrated by the classic fourth-
order Runge-Kutta method.

The formulation has been implemented in two special-
purpose computer programmes for the longitudinal in-plane
motion and for the complete three-dimensional motion. By
exploiting the special nature of the structure, these simulators
are far superior in computing speeds than would be possible
by making use of general-purpose software.

The following sections describe the modelling of the sys-
tem and show some results for a preliminary design. Other
aspects of the laddermill have been discussed in [1].

MODEL DESCRIPTION

Global frame of reference

It is assumed that the earth is flat and at rest. The origin O of
a global frame of reference Oxyz is put at the ground in the
vicinity of the point where the cable is veered out or hauled
home. The z-axis points in the direction of the nominal
wind (“north”), the z-axis points vertically down (“nadir”),
and the y-axis is such that an orthogonal right-hand frame
of reference is formed (“east”). As an auxiliary quantity the
altitude h, h = —z, is used.
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Fig. 2: Average wind velocity profile for the altitude range
0 < h < 800m.

The wind velocity can be some general function of time
and place. For a first analysis, it suffices to consider only the
horizontal mean wind velocity, which is averaged over some
short time interval such that the influence of variations due
to turbulence or gusts is eliminated. This short-time average
horizontal wind velocity as a function of the altitude, Vo, (h),
is approximated by a profile consisting of a part described
by a power law for low altitudes (the atmospheric boundary
layer) and a linear part above this layer up to the tropopause
as

Vi (h) = Vo(h/ho)*?
Vw(h) =W +‘/1(h_ hO)

(0 < h < ho),
o<ty @

Here, hy is the thickness of the boundary layer, V} is the aver-
age wind velocity at the top of this layer,and V/; is the velocity
gradient above this layer. Some typical values are Vy = 8
m/s, hg = 500 m, V3 = 0.0016 1/s. Figure 2 shows this
profile for 0 < A < 800 m. The exponent 0.2 was proposed
in [2]; other approximate formulas can be found in [3]. For
two-dimensional problems, the direction of the wind velocity
is assumed to be fixed in the negative x-direction, while for
three-dimensional problems, the direction may change as a
function of the altitude: for instance, the angle ¢ may be
given by

d)s(h) = ¢S(OO)[1 - exp(_h/hs)]7 (2)

where h; is some characteristic height for the variation of the
direction of the wind.

The mass density of the air as a function of the altitude,
pa(h), can be approximated by the barometric altitude for-
mula for constant temperature,

pa(h) = pa(0) exp(=h/Hy), (3)

where Hy = p(0)/(pa(0)g) = 8400 m is the thickness of a
uniform atmosphere, or by the value for the standard atmo-
sphere.
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Fig. 3: Position and orientation of a wing. The index p has
been omitted in the annotations for the sake of clarity.

Wings

The wings are considered to be rigid. The equations of
motion for each wing are formulated with respect to a body-
fixed frame C},Z 7,2y, Where C), is located in the centre of
mass of wing p, the Z,,-axis points to the direction of the nose
of the wing, the z,-axis points to the underside of the wing
and the g,-axis points to the right. The Cz,zp-plane is a
plane of symmetry for the body. The position of the centre of
mass with respect to the global frame of reference is denoted
by the vector x,,, while the orientation is described by the
customary modified Euler angles with order of rotation 3-2-
1, with the yaw angle (compass angle) ¢3,, the pitch angle
(inclination) ¢2,, and the roll (bank) angle ¢1,, (Fig. 3).
The equations of motion are

mp(Vp + wp X vp) = 6,
: (4)
Jpwy +wp X Jpwy, = M,,.
Here, f, and M, are the total applied force vector and mo-
ment vector with respect to the body-fixed frame of reference;
myp, is the mass and J, is the inertia tensor. v, and w,, are the
velocity of the centre of gravity and the angular velocity ex-
pressed in components with respect to the body-fixed frame
of reference. Besides the equations of motion, the kinematic
differential equations relate the rates of the position and ori-
entation variables to the velocity variables as

).(P = RP(¢1P7 ¢2p7 ¢3p)vp (5)
and
b1y
‘1_’21) = Ap(1p, P2p, P3p)Wp- (6)
¢3p

The precise form of the rotation matrix R, and the matrix
A,, together with other details, can be found in [4].

The applied forces and moments consist of gravity forces,
which act in the direction of the global z-axis, the forces
exerted by the cables on the bodies, and the aerodynamic
forces from the surrounding air. The last kind of forces are
derived from their quasistationary values and expressed in
components with respect to a body-fixed frame of reference.
The longitudinal forces in the plane of symmetry and the



Fig. 4: Cable element with eccentric connections.

lateral forces are assumed to be decoupled. The longitudinal
forces depend on the angle of attack and its rate in a non-
linear way. The lateral forces are linearized with respect to
side slip angle, yaw rate and roll rate, where the coefficients
depend on the angle of attack.

Cable elements

Kinematics. A segment of the cable between two wings
which are identified by the nodes p and ¢ is modelled by
a truss element with eccentric attachment points, which are
called r and s (see Fig. 4). For a refined analysis this segment
can be subdivided into a number of such elements, without
wings or eccentricities at intermediate points. The eccentric-
ities are given by a, and a,, expressed in components with
respect to body-fixed frames of reference. If the cables are
attached to identical wings in a single point, thena, = a,.

As a measure for the axial deformation of the cable ele-
ment the change in length between the attachment points as
compared to the nominal unstretched length of the piece of
cable is chosen. If we introduce the auxiliary vector between
the points of attachment 1 and its length [ as

l=x, —x, =x4 + Ryja;, —x, — Rpa,,

7
= = VAL @

this deformation ¢ is
g = l — lo, (8)

where [y is the undeformed nominal length of the cable el-
ement. The rate of deformation, the derivative of & with
respect to time, is given by

Here e; = 1/1 is a unit vector in the direction of the vector 1
and

1= %, — %, = Ry(vy +wy x a,) — Rp(vp +w, X ap).
(10)

Mass description. If there are no eccentricities and the
velocities of the nodes are described with respect to a global

inertial frame of reference, the mass matrix for a truss element

is given by
me (21 1
MOe - ? ( I 21 > ’ (]‘1)

where m. is the mass of the element and I is the three-
dimensional identity matrix. Because of the eccentricities
and because nodal velocities are given with respect to body-
fixed frames of reference, this mass matrix has to be trans-
formed. The connection of the velocity quantities of the
nodes and the velocities of the points of attachment of the
cables is given by a transformation matrix T as

Vp
X\ _ Wy
(&)—T o] (12)
Wy
(R, -R,a, 0 0
T‘( o o0 R, -Ra )

Here %, and %X, are the velocities at the attachment points of
the bodies p and ¢ respectively, and a is the antisymmetric
matrix associated with the vector a such that a x b = ab
for any vector b. With this, the transformed mass matrix
becomes

M, = TTM,.T. (14)

In addition to the inertia terms given by the mass matrix
multiplied by the time derivatives of the velocity quantities,
there are inertia terms that are homogeneous quadratic func-
tions in the velocity variables, h., which are obtained from
the time derivative of the matrix T as

_ Ryplwp x (vp +wp x ap)]
—h, = T"M,, ( Ry[wq >>Z (Vg +wy ::aq)] > -

Stress-strain relation. In principle it is feasible to use the
customary linear relation between stress and strain for the
truss elements. However, because we intend to use only one
element between two wings, or at least a number as small as
possible, and intend to prevent the occurrence of compressive
forces in the elements, which cannot exist in ideal cables, a
non-linear stress-strain relation is proposed that takes into
account the sag of the pieces of cable caused by gravity and
wind load. Usually a constant distributed load is assumed
over the length of the element, but because the aerodynamic
load on the cables may vary over its length, and an inciden-
tally nearly zero lateral load on the cable has to be prevented,
a linearly varying load is assumed in the lateral directions
of the cable. For the calculation of the stress-strain relation,
a local system of coordinates with origin at the attachment
point r, z-direction pointing towards the attachment point
s and the § and Z-direction perpendicular to this line and
to each other. The linear approximation for the distributed
load in these directions, denoted by p,, and p., yields lateral
deflections which, to first order, have to satisfy the equations

Dy = pyr(]- - f) +pys£ = —U’U”,

z = pzr(l - f) +pzs£ = _lela (16)



where £ = Z/1, 0 < £ < 1, is the non-dimensional coordi-
nate along the Z-axis; py,, Pys, Pzr and p., are the values
of the lateral loads at the points of attachment r and s; o is
the desired tensile force in the cable, v and w are the lateral
deflections and a prime denotes a derivative with respect to
the Z-coordinate. The contribution of the inertia terms to the
lateral deflection is excluded, because these are not known
initially. The solutions of these equations are given by

ov = py, (56 — 36 + §€°) + pysl* (56 — §6°),

&%)
(17)

ow = pzrlz(%g - %62 + %63) +p28lz(%£ -

These deflections give a contribution to the true elongation,
measured along the deflected cable, the principal term of
which is

1 : ; €

o 3l + (w)?)idg = =% =
(3670l + giPurPysl® + 5P3l") +

(gl_opirl3 + %pzrpzsﬁ + gl_opisl3) .

1
o) (18)
1
2

ag

The relation between the true elongation and the tensile force
is now given by the usual linear relation as

_EA

DA
o= cp 3

T EToD T

(19)

Here A is the surface of the cross-section of the cable, E is
the effective modulus of elasticity and D is the corresponding
damping modulus in the Voigt model, where it is assumed that
the lateral deflection has no influence on the damping. This
assumption is allowed if the damping is small or neglected.

The above cubic equation can be solved exactly, but pref-
erence is given to the iterative Newton-Raphson method,
which is more robust and converges fast, especially if the
contribution of the lateral deflection is small. In this method
a zero of the scalar function

, BAc+DA: , FAg,
lo lo

folo) =0 (20)

is sought. As an initial guess for the solution,

&mzmm<ﬂ%7D&,d%%ﬂ 1)
0 0

is chosen. From a present approximation o (¥), a subsequent
approximation o (*t1) is found as

i) _ o _ Ja@™)
df,/do’

until convergence has been achieved. The iteration process
converges if the two points of attachment do not coincide
(I > 0) and the lateral load is unequal to zero (¢, > 0).

The tensile force o gives a contribution to the global force
vector of the system of —DZO’, where the difference matrix

D. has been introduced, D, = (—el el)T.

(22)
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Fig. 5: Aerodynamic loads on the cables for two cases.

Loads on the cable. The load on the cable consists of a part
due to gravity, which points to the global z-direction and has
a magnitude of p.Ag per unit of undeformed length, where
p. 1s the mass density of the cable, and g is the acceleration
of gravity. Another part is due to the relative flow of the
surrounding air, which yields a drag force in the direction of
the relative wind velocity and a lift force perpendicular to this
direction in the plane of the relative wind velocity and the
tangent to the cable. For the calculation of the aerodynamic
load the influence of the sag as described above is neglected.
The drag D and the lift L per unit of length are given by

1 . 1 .
D= ECdPaVrzdca L= §Clpavrzd67 (23)

where V. is the magnitude of the relative wind velocity and
d. is the diameter of the cable. The drag and lift coefficients
Cy and C} are taken from [5] to be

Cy=Cno sin® ae + Cro,

C; = Cno sin? a. cos ag, (24)

where the angle of attack «. is taken in the interval [0, 7)
and the lift has the corresponding direction (Fig. 5). Except
for extreme cases, the Reynolds number is below the critical
turbulent value, which is of the order 10°, and the values
Cno = 1.1, C1g = 0.02 are chosen.

The distributed applied load is replaced by statically
equivalent nodal forces at the nodes.

Boundary conditions

Two nodal points are fixed at the generator. The motion of
the cable is taken into account by changing the undeformed
length [y of the first and last cable element at the rate of the
cable speed V.. This changes the constitutive relation and
the total mass of the element accordingly. Initially the length
of the first element is %lo and the length of the last element
is %lo. If the cable has moved a distance [, a wing is taken
off from the hauled part of the cable and a wing is added
on the veered part of the cable. The two adjacent elements
on the hauled part are combined into a single element and
the first element of the veered part is split into two elements,
with the new wing attached to their common node. The new
coordinates and velocities of this body are obtained from a

linear interpolation.

System equations of motion

The equations of motion for the whole system are obtained
by a standard finite element assembly process from the con-
tributions of each body and element. The global mass ma-
trix consists of contributions from the wings and from the



elements. The global force vector is composed of velocity
dependent mass terms h, external forces f and element forces
—D7T . With these, the equations of motion become

Mv =f+h-D"g. (25)
All velocity variables of the nodes are grouped together in
the vector v. The mass matrix is position as well as time
dependent, so the equations of motion have to be solved for
the rates of the velocity variables in each function evaluation
of the numerical integration scheme. Because of the band
structure of the matrix, this involves a limited amount of
work.

In addition to the equations of motion, the kinematic
differential equations that relate the rates of the position vari-
ables to the velocity variables have to be integrated in time.

For the numerical integration of the full set of first-
order differential equations, the classic explicit fourth-order
Runge-Kutta method [6] with a fixed time step is used. It has
been shown in [7] that this method is suitable for mechanical
systems of the kind considered here.

Implementation.

The model has been implemented into two special purpose
computer programmes written in the language Fortran-77,
one for the two-dimensional case, and one for the three-
dimensional case. For the two-dimensional case, the out of
plane motion is not needed and the equations are simplified
accordingly.

EXAMPLES OF APPLICATION

System configuration

A model is considered which consists of 103 nodes, with 101
lifting bodies separated by pieces of cables of length 70 m, so
the maximal height that can be reached is about 3500 m. The
lifting bodies consist of a pair of wings with a splitting, to
which tail booms are connected which have a horizontal and
a vertical tail surface. The angle of attack can be controlled
by turning the horizontal tail surfaces. The main wings have
an area of 54 m?, a span of 20 m, and a weight of 54 kg. The
distance between the centre of gravity and the aerodynamic
centre of the main wing is 0.75 m, while the distance to the
point of attachment, that is, the magnitude of the eccentricity
of the cable elements, is 1.50 m, while the tail booms are 5 m
long. The diameter of the cables is 2.5 cm, and the weight
of the pieces of cable is 21 kg. The parameters for the wind
profile are Vo = 8 m/s, V3 = 0.0016 1/s, hy = 50 m. The
laddermill is placed at a height of 50 m.

Two-dimensional results

For the in-plane motion, the final shapes that the device ob-
tains for V. = 1 m/s and V., = 5 m/s are shown in Fig. 6.
One should note that due to the removing and attaching of
wings near the ground, the resulting motion is periodic, and
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Fig. 6: Stationary shape of the mill for the cable speed V. = 1
m/s (left diagram) and for V. = 5 m/s (right diagram).
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Fig. 7: Tensile force is the elements for the two cases shown
in Fig. 6.

periodic variations of the shape occur. For low cable veloc-
ities, the ascending and descending part are almost parallel,
and danger of mutual collisions is present. For larger ca-
ble velocities, the loop widens, because the difference in the
direction of the relative wind velocity for the two part in-
creases. Figure 7 shows the tensile force in the cable. The
tensile force is smallest near the top, which value increases
as the loop widens. The difference in tensile force between
the first and last element drives the generator. A fair estimate
of the power is obtained by the product of this difference
and the cable speed. In the considered case with a moderate
wind, this power is of the order of 200 kW, where it has to
be noted that the configuration has not been optimized for a
maximal energy yield.

If the tail surface is sufficiently large, the in-plane motion
appears to be remarkably stable for disturbances. If the
distribution of the wind velocity or the cable speed change,
the mill comes to a new stationary motion after some transient
motions.



Angle [rad]
3

0 5 10 15 20 25 30 35
Time [s]

Fig. 8: Rotational motion of node 40 for a disturbance of
0.01 rad in the direction of the wind; V. = 2 m/s.

Three-dimensional results

As a test, in-plane motions were calculated with the pro-
gramme for two-dimensional motions as well as the pro-
gramme for three-dimensional motions. The results were
almost identical.

If the stationary in-plane motion is disturbed, the resulting
motion appears to be unstable. As an example, the influence
of a small change in the direction of the wind on the orien-
tation of the wing at node number 40 (in the ascending part
close to the top) is shown in Fig. 8. The wing yaws over a
large angle before the calculations breaks down after some
40 seconds. This break-down of the programme is caused by
the chosen fixed step size in the integration method; with a
smaller step size, the simulation could be continued longer.
Furthermore, the angles of attack, the side-slip angle and the
yaw and roll rate come in a range for which the aerodynamic
data for the wings are no longer accurate.

The instability of the out-of-plane motion for a glider
fixed to a cable has been observed in several other investi-
gations, among others [8, 9], even if the glider would fly in
a stable way without cable. This instability appears to be
caused by the splitting of the multiple zero eigenvalues. For
the in-plane motion, this multiplicity is two; if the eigenval-
ues split in a direction along the imaginary axis, stability can
be maintained. For the out-of-plane motion, the multiplicity
is also two. It appears that for the perturbation of finite size an
interaction with two other small eigenvalues make the system
resemble a system with a zero eigenvalue with multiplicity
four, which is generically unstable for small perturbations.

CONCLUSIONS

A way to model the laddermill concept has been described.
This model has been implemented in two computer pro-
grammes, which make possible an efficient and robust simu-

lation, almost in real time, of the motion of design concepts.
A special way to model the tensile force in the cables, in
order to avoid a sharp transition between slack and tight con-
ditions, has proved to be successful. The changing length of
the first and last cable segments could be easily incorporated
by changing the nominal length of the corresponding truss
elements. By formulating the equations of motion of the
wings with respect to a body-fixed frame of reference, use
could be made of standard aerodynamic coefficients.

The results of simulations for a preliminary design showed
that the in-plane dynamic behaviour could be made satisfac-
tory. The lateral motion, however, showed instability for the
proposed wing configuration. The possibility of improving
the stability by a change of the design or by adding additional
controls will be considered in future.
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