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Abstract. Two formulations for a flexible 3-D quadrilateral moderatehick plate element
based on the absolute nodal coordinate formulation are coegh The two approaches consist
of a fully parameterized plate element and a fully parameéet plate element with linearized
transverse shear angles to overcome slow convergence awdtate locking. For the sake of
verification of the formulations and numerical tests, a tpiate element based on a classical
Discrete Kirchhoff Triangle in large displacement framewdskalso utilized. A comparison
is accomplished through use of the comprehensive set of defakrmation static tests and
eigenfrequency analyses. These results are benchmarkedwmn analytical solutions.

It is shown that plate elements based on absolute nodal awateliformulation reach the
same result and convergence for pure bending loads. Howeweer shear deformation load-
ing, slow convergence due to shear locking occurs in the cbag original plate element. The
numerical examples indicate that thickness locking (knolsa as Poisson locking) is a prob-
lem for both of the plate elements based on absolute nodatit@te formulation. Thickness
locking arises when full 3-D elasticity is employed in thdyfydarameterized elements. All
computations are implemented using MATLAB.
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1 INTRODUCTION

The nonlinear continuum plate/shell elements have beeerwaddive research for more than
four decades. Usually, these conventional continuum fsla¢d elements utilize rotation pa-
rameters instead of slope vectors. It has been previousiydnced that continuum shell el-
ements, with fully three-dimensional stresses and straens be degenerated to shell element
behavior such that the kinematics and constitutive assomgpbf shells are acceptable, see
for example[1]. This isoparametric continuum shell eletr&nown as A-I-Z shell element)
is based on the Mindlin/Reisssner hypothesis. The elemehidas 3 translational and 2 rota-
tional parameters at a node. However, it is known that thezéshell element suffers from shear
locking, which can be alleviated with the introduction opaeate linear interpolations for trans-
verse shear deformations in a four node shell element (kreswdITCH4 shell element) [2].
The original MITCH4 element is derived from the A-1-Z shekkglent using the same five node
parameters, the only difference is that shear locking isgd@ebby using mixed interpolation. To
be able to use general 3-D elasticity without making any fincations due to degeneration such
as condensation of thickness strain is worth the additiaghiokness deformation in the contin-
uum shell formulation. Additionally, in case of large sirgjithe thickness deformation has to be
taken into account. However, the interpolation for disptaent in the thickness direction must
be larger than linear, otherwise, with fully 3-D elastiditys a source of thickness locking. Due
to this fact, the 7-parameter formulation is introdudedviBjch means there will be two extra
parameters at a node, allowing for linear stretching in kiekhess direction. Also, the shell
element based on MITCH4 formulation, which uses only 22 degod freedom including five
generalized displacements at node and two for linear teskistretching, has been introduced
in [4]

The absolute nodal coordinate formulation (ANCF) is a finlereent procedure that was
recently proposed for flexible multibody applications byaBanal[5]. The formulation can be
applied to conventional as well as shear deformable beanplatel elements. In the shear de-
formable elements, the beam and plate elements can belmEsas continuum by using the
positions and position gradients as nodal coordinates.ohtrast to conventional beam and
plate elements, position gradients of the material poititiiwithe element are derivatives of the
displacement field. In continuum beam and plate/shell etdsnéhe kinematics and constitu-
tive assumptions for conventional beam and plates/stediribs can be relaxed. Because of the
material description, the strain and stress quantitiesranee-indifferent, leading to the possi-
bility to describe large deformation problems. This candanplished, for example, by using
a nonlinear material model based on hyperelasticity [6,i]the absolute nodal coordinate
formulation, the description of the material point is désed through use of shape functions
and nodal coordinates. It is worth noting that this desimipaccounts for large rigid body ro-
tations of the finite elements. This leads to a constant mas$xm two and three dimensional
applications and is a unique feature among the beam andgiatents based on the absolute
nodal coordinate formulation[8].

The first ANCF plate element was developed by Shabana and éts&i([9]. This plate
element was based on the classical (Kirchoff-Love) platet while rotation parameters were
used only to describe the bending deformation. In order toaat for the shear deformation
and thickness deformation, in case of thick plates, thg fidrameterized quadrilateral plate el-
ement was developed [10]. Full-parameterization indeatage of the position vector and all
position vector gradients as variables at nodal locatidasother fully parameterized quadri-
lateral plate element was introduced to overcome the slowergence due to shear locking
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and curvature locking [11]. It is noteworthy that the fullgrameterized plate elements under
investigation are based on an identical approximationrfglane, the only difference being the
description for kinematics in the transversal directiohe3e fully parameterized plate elements
are based on continuum mechanics theory and fully threessional strain and stress tensors
are employed in the formulations. As a result, these coantmelements should be applica-
ble for the analyses of thin and thick plates and any geneatéémal law based on continuum
mechanics can be used. The main difference between coomeahfinite elements and ANCF
elements is that the mass matrix is constant for ANCF eleméiitis is computationally ef-
ficient if explicit integrators are used. Additionally, teeare no geometrical approximations
included in the ANCF elements [12], which is seldom the casedaventional structural finite
elements.

The purpose of this study is to make comparisons between tagerately thick plate el-
ements based on the absolute nodal coordinate formulalibese fully parameterized plate
elements are employed in simple numerical examples in wéilslantages and disadvantages
of the elements can be demonstrated. Verification of the terments is accomplished through
numerical examples in framework of thin and thick plates.tHis study, the elastic forces
of fully parameterized elements are made by using full Gansstegration to show that the
elements are performing properly.

2 KINEMATICSOF FULLY-PARAMETERIZED PLATE ELEMENT

In this section, the fully parameterized plate element bikkdia and Shabana [10] will be
shortly revisited. This four-node quadrilateral platenedmt, which is denoted in this study
as ANCF-P48, consists of 48 degrees of freedom. Three degfdesedom are for position
and nine are for gradients at each node. In elements basdwe@absolute nodal coordinate
formulation, kinematics is expressed by using spatial slfapctions and global coordinates,
similar to conventional solid elements. The position of ebiteary particle in the isoparametric
fully parameterized plate element can be interpolatedargtbbal fixed frame as follows:

r=2S,(x)e, (1)

where S, is a shape function matrix expressed using physical elecwordinatese and
e = e(t) is the vector of nodal coordinates. The kinematics of thenele on the reference
configuration at time¢ = 0 can be described as = S,,(x)ey, whereey = e(0). In Fig.[,
the fully parameterized undeformed plate element at cugenfiguration with dimensions of
width [, lenghtl, and thickness$, are shown.

The vector of nodal coordinates at nadean be written as follows:

T

e® = | pOT O LOT LOT Ty g (2)

— |

wherer is the position vector of the element angdy and z are physical coordinates of the
element. In this study, the following notation for partigrivatives is used:

(%)

T o (4)
'r(i)z r(i) :Gr ; a=x,Y,z
Ne 2,a 8& ) y oy <
O
3.«
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Figure 1: Undeformed plate element with its dimensions iment configuration.

The interpolation functions for position are based on thiefong set of basis polynomials

L, 2,y, 2,2, yz, yx, 2%, y°, 2%, y° 2%y, v’ o, 2y z, 2y, 2y (3)

Note that the basis polynomials in EgG] (3) are incompleté, fan this reason, the element
has linear terms only in transverse coordinateAccordingly, the displacement distribution
is linear in the element’s transverse direction. The irgkxmon for position is cubic in the in-
plane coordinatesandy. The shape functions can be presented through use of locahtined
coordinates, such &sn,( € [—1...1], and are listed below:

g CLHOU-m(E4emn®tn=2) o L (1-n)(+O(-1+6)°
1= S ) 2 = 16 ?

Sy = by (1—5)(71-1F61)(—1+71)2’ S, = IZC(*1+§)(*1+77),

O+ (82 —&4+n*+n—2) _ L (-(=1+n(1+8)?
55 = ) ) Sﬁ - 16 )

S, =k (1+g)(n;1)(71+n)2’ G = lz<(1+8£)(1fn)7

(4)

(=) (8¢ —n—2) _ L (1) (1) (1+6)°
Sg - ] ’ SlO - 16 )

Sy = ly(1+£)(*116+77)(n+1)2’ Sy = LCOHO@HD.

_ 2 2 2
Sy, = ( 1+£>(n+1)(58 +Ee+n2—n 2), Suu = lz(1+£)(77-1i-61)(—1+5)

S5 = ly(—1+£)(116—77)(n+1)2’ - zZC(n+81)(1—£)
where relationg = 2z/l,, n = 2y/l, and{ = 2z/l, when the physical coordinate system
x,y, x is placed along the middle of the element. These shapeifunsctan be represented in
matrix form as:

Y

Sp=[ S SI SsI ... Sl | (5)

wherel is a 3 x 3 identity matrix. Due to the isoparametric property of tthengent, the
kinematics[(IL) can also be expressed in terms of local na@ethtoordinates = S,,,(£, 7, )e.

The strains can be obtained by using the Green strain tdisdnich can be written for the
plate element as

E = %(vrTvr 1), (6)

4
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whereVr is the deformation gradient. The deformation gradient carstoown through the
relationship of deformations between the initigl= S,,e(t = 0) = S,,e( and current config-
urationr as follows:

vr or _ Or (87'()) ‘ Ko

~ory 0z \ Oz

Using the engineering notations, the strains can be writt&actor form as
e=[E. E, FE.. 2E, 2E,. 2E.|" (8)

3 KINEMATICSOF PLATE ELEMENT WITH LINEARIZED SHEAR ANGLES

The plate element with linearized shear angles [11], dehiot¢his study as ANCF-P48lsa,
leads to an improved definition of the elastic forces, simeeuse of linearized shear angles
overcomes the shear locking and curvature locking assatwith the plate element. The plate
element with linearized shear angles is based on the sampiane-interpolation functions as
the original fully parameterized plate element/[10]. Whempared to the original element
ANCF-P48, however, the fiber deformation of the plate elerddCF-P48Isa is modified in
order to linearize the transverse shear deformations. dppsoach for avoid shear locking is
well known among classical MITCH shell elemernits [2]. The saffiect can also be avoided by
the Hellinger-Reissner variational principle, which hasiapplied to the ANCF beam element
in [13]. Slow convergence due to shear locking can also beawgal by using additional shape
function terms, which are employed in higher order beam etgmbased on the absolute nodal
coordinate formulation [14]. In plate element ANCF-P48lde description of an arbitrary
particle in the element can be expressed as

re= 'r‘ S + AlSAZSﬁ’ Z. (9)
The vectorn describes the unit transverse vector of the mid-plane, wtén be expressed
with the aid of slope vectors as follows:

Ty XTy

, (10)

z=0

n =

[

The vectomn is normal to mid-plane and, therefore, it is invariant wigispect to transverse
shear deformation. The normalization leads to a cumbersmuation, but it is worth noting
that the error due to shrinking will be avoided simultanéypuhe matricesd1gand Aogare
used to describe the transverse shear deformation. Theésees&an be obtained by using the
Rodrigues rotation formula and by assuming that the shedesiage small as follows:

Ajg=T+7, siny + 272 sin’ % ~ T+ 7,7, (11a)

gk

Aog=T+7,siny, + 2 %?y sin? 52 ~I+7r,7 (11b)

wherey; andy, are the shear angles with respect to slapgandr , that define the direction
of rotation. A skew-symmetric matrix , is determined by the unit vecter, and, respectively,
a skew-symmetric matrix , is determined by the unit vecter,. Utilizing the property of the
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absolute nodal coordinate formulation, the shear anglesd~, can be derived from the slope
vectors as follows:

T T
Tyt ~v and siny = Tols ~a. (12)
7yl 2l

In this case, shear angles in the element will be interpdlatglane by fourth order poly-
nomials. However, it is known that nonlinear interpolatidar shear deformations can lead to
slow convergence, which can be alleviated by linear inttpmn for transverse shear deforma-
tions [2]. For plate element ANCF-P48lsa, a slightly diffgrapproach for the interpolation of
shear deformation is employed. To guarantee that parasiéim distribution is zero, the nodal
values are used instead of sampling poihts [15]. Theretbeepilinear interpolation for the
shear angles are used i.e. the shear angles are interplotady over the length and width of
the element using the following equations:

siny; = __TaTe
|7l |72 |

AN =S NOA and AN =37 N0 (13)
=1 =1

whereN @ are bilinear shape functions at mid-plane. With the lireatiRodrigues rotation
formula and the shear angles, the rotation matri¢gg and A, ¢ take the form:

Aj~ T +7,9M and Apga I+ 7,40, (14)

According to [11], in case of small displacements and whemehts at current configu-
ration are in axis-parallel to reference configurationt wectors can be expressed by =

[1. 00 }T andr, =[0 1 0 }T. Using this simplification, the product of shear matrices
can be expressed as follows:

1 0 vyn
AgsAzs~| o 1 ,lint, (15)
—fin AN

where quadratic term{invyn is neglected. The strains can be obtained by using the Green

strain [6). As a result, the strain components can be exgiless

Boo= s (e — 1), Epy= o (7 rey — 1),
Lo 2y (16)
Eary = 5 (frzxre,y) s Exz - 5 (rgxre,z) ) Eyz - 5 (TZyre,z> .

The strain component. . in the element thickness direction can not be defined witlke-kin
matics, as described hy (@). The strain componeldt,. can be obtained from kinematiesof
the fully parameterized plate elemellt (1) as follows:

1
E.=-(Lr, —1). 17
5 (rers—1) (17)
The strain component,. can also be interpolated with the use of bilinear shape ionst
which can be used to avoid the curvature locking (also callepgezoidal locking), see for

example [15/ 16]. Therefore, the bilinear strain distriidmtEiizn along the length and width
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of the element is used in this study. The strain componemt$eashown in vector forma as
follows:

_ lin T
e=|E. E, EM 2B, 2F,. 2E,. (18)
where kinematics with linearized shear angles is used fstrain components exceﬁijzizn.

4 ELASTIC FORCES, EXTERNAL FORCESAND MASSMATRIX

In the ANCF elements, the general hyperelastic materialbearsed in the definition of the
elastic forces. However, in this work, 3-D elasticity foetfully parameterized plate elements
is described by using the simple linear elastic St. VenantHoff material, which is valid
in small strain regime. The constitutive relation in casdir#ar elastic St. Venant-Kirchhoff
material can be expressed as

S=‘D:E (19)

where the fourth order tensbb includes the properties of the material. In case of an elasti
isotropic material, the relation between the second Rfalekhhoff stress tensor and the Green
strain tensor takes the form

S = Mtr(E) + 2GE, (20)

where) andG are the Lamé elastic constants. The strain energy of one @latent can be
written as

1
Wine = = / e’ DedV (21)
2 \%4
and the vector of elastic forces can be defined as
aVVintT
. = , 22
e (22)
The externally applied forces can be determined from
Fo. = / b’'S,, dv. (23)
14

whereb is the vector of body forces. In the special case of gravitg,liody forces can be
written asb = pg whereg is the field of gravity. Using the definition for kinematicstbe fully
parameterized plate elemeht (1), the absolute nodal auatedformulation leads to a constant
mass matrix as follows:

M = / pSt S, dV. (24)
|4

In case of a linearized shear angle, the mass matrix wouldmgel be constant if the same
interpolation, as for the elastic forces, is uddd (9). Hawgethis error is due to inconsistencies
between kinematics and kinetic energy and will decreasaluewvith the use of finer meshes.
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5 NUMERICAL TESTSFOR THIN PLATE

The two plate elements presented in this study account étréimsverse shear deformation
and nonlinear strain-displacement relationship. For itbéson, elements are not restricted to
thin plate and small displacement, although the first nuraévierification is carried out in this
regime. The convergence is studied by mesh refinement foc stad eigenvalue tests. The
numerical tests, such as the cantilever plate and eigardrayy analyses, used in this study are
originally introduced by Schwab et. al [17] for verificatiofi thin ANCF plate. The regular
meshes: x n, as shown in Fid.]2, are used.

L FM
21
21
B T E®$
&
® 1
/Z X L

Figure 2: Loading, boundaries and uniforrx44 mesh of a square cantilevered plate with quadrilateratefes.

5.1 CANTILEVER PLATE

The first numerical test is a linear static analysis of an it#iy-wide cantilever plate under
two different loading conditions. The first loading case distributed moment and the second
is a distributed transverse force along the free edge ofttinetare. The numerical solutions
are compared to the analytical exact solutions for trarsevdisplacement, which in the case of
static analysis are found to be as follows:

ML?* FL* ML FL*
Wegact = ﬁ + 3D and Pexact = T + 2D
where M is distributed momentF is distributed force along the loaded edge dnds the
elastic plate constant defined as follows= FH?/(12(1 — v?)). The results of the compu-
tations for the transverse displacemantind rotation along the loaded edge abgt#xis ¢
are normalized with respect to exact analytical resultse ftation angle> which defines the
rotation due to shear and bending for ANCF plate elementsheaxpressed as follows:

(25)

T
’l"o Z’I" 2
= arccos —————— (26)
v 7o 7]

wherer, is defined such thag, is vector of nodal coordinates at the initial configuration.
In this exampler, . = [0, 0, 1]7 is the transverse slope at the initial undeformed configuat
The test is modeled with the following parameters: length= 1 m, heightH = 0.01m,
width W = 1 m, Young's modulust = 210 - 10°-Y,, shear modulugz = ﬁ shear
correction factork, = 1, Poisson’s ratiovr = 0.3, the distributed moment/ = 1Nm/m and
force F' = 1N/m. At the clamped end, the boundary condition is definedigdiall the nodal

degrees of freedom at;. In referencel[17], the component, was unfixed in the clamped

8
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boundary to allow the in-plane deformation. However, irstbiudy, the slow convergence
due to the fixed component , was not observed. The analytical solutions are defined for a
cantilever plate with infinite widthi/’. For this reason, the in-plane componesj is fixed

in order to avoid in-plane rotation along the boundafiggandl',. However, transverse shear
deformatiory,. is still unconstrained in order to avoid slow convergenciee doundary’; is
unconstrained while it is loaded by the distributed foFcer moment)/.

Table 1: Average normalized transverse displacemenéd rotationsy at the loaded edge for a square can-
tilevered plate loaded by a distributed moment or a disteitbtransverse force at the free edge for number of mesh
refinements and two different element types witt0.3.

Moment Transverse force
Mesh | ANCF-P48| ANCF-P48Isal ANCF-P48| ANCF-P48Isa
w w w w
1x1 0.8164 0.8164 0.6123 0.8164
2X2 0.8164 0.8164 0.7654 0.8164
4x4 0.8166 0.8164 0.8039 0.8165
8x8 0.8169 0.8165 0.8137 0.8166
16x16| 0.8174 0.8168 0.8167 0.8168
32x32| 0.8185 0.8172 0.8183 0.8173
64x64| 0.8205 0.8181 0.8204 0.8182
P ¥ 4 4
1x1 0.8164 0.8164 0.8164 0.8164
2X2 0.8165 0.8164 0.8165 0.8164
4x4 0.8167 0.8164 0.8166 0.8164
8x8 0.8170 0.8166 0.8169 0.8166
16x16| 0.8175 0.8168 0.8174 0.8168
32x32| 0.8186 0.8173 0.8185 0.8173
64x64| 0.8207 0.8182 0.8206 0.8182

As can be seen from results in Table 1, the chosen boundaditiwors lead to acceptable
results, as errors are almost equal in both loading casesskof the transverse loading force,
the convergence of ANCF-P48Isa is significantly faster thendriginal fully parameterized
plate element. This is due to shear locking, which is avolelihearization of transverse shear
angles in ANCF-P48Isa. However, both elements converge tocanrect solution under both
loading cases. The reason for this is thickness lockingchvis due to low order interpolation
approximation in the element transverse direction in fel) 8lasticity. In case of spatial beam
elements, locking can be avoided by neglecting Poissoiteffith =0, as explained ir [18].
Correspondingly, in case of continuum plates and shellggrdiit modified material laws can
be used to overcome the thickness locking for thin platdsiie)].

5.2 EIGENFREQUENCIESAND CHLADNI FIGURES

The second test is an eigenfrequency analysis with freedzoigs. The eigenfrequencies
w are nondimensionalized by the frequengy = =7?./D/pHL* and the analytical results
for eigenvalue analysis are obtained from referencé [1THe &genmodes will be presented
as Chladni figures, where lines of nodes without displacesnamt shown. Studies of the thin
plate SPACAR element and the fully parameterized plate el AN CF-P48 are also presented

9
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in [17]. In this numerical example, a relative plate thicksef /L =0.01 was used. The
eigenfrequencies for the case of free boundary conditiom®egpressed in Tablé$[2-3 where
in-plane modes denoted by — are not shown.

Table 2: First ten dimensionless eigenfrequengfies w/w, of the free transverse free (ffff) square plate modeled
by the ANCF-P48 with Poisson factor =0.3 for a number of mesh refinements. A relative plate thiskref
H/L = 0.01 was used.

No.| 1x1 2x2 4x4 8x8 | 16x16 | 32x32 | 64x64 | Analytic
1.4383] 1.4381| 1.4245 | 1.3870| 1.3739| 1.3715| 1.3701| 1.3646
2.2739| 2.2738| 2.0761 | 2.0396| 2.0268| 2.0241| 2.0235| 1.9855
3.5947| 3.5944| 2.9253 | 2.8184| 2.7867| 2.7798| 2.7781| 2.4591
71.994| 7.9946| 5.5712 | 3.8034| 3.6448| 3.6284| 3.6234| 3.5261
71.994| 7.9946| 5.5712 | 3.8034| 3.6448| 3.6284| 3.6234| 3.5261
- 18.036| 7.8878 | 7.0253| 6.8120| 6.7653| 6.6851| 6.1900
- 18.036| 7.8878 | 7.0253| 6.8120| 6.7653| 6.7541| 6.1900
- 54.593| 14.9194| 7.4395| 6.7585| 6.6985| 6.7541| 6.4528
- 72.227| 16.687 | 7.9823| 7.2925| 7.2245| 7.2095| 7.0181
72.524| 17.665 | 9.3391| 8.6230| 8.5354| 8.5162| 7.8191

=

©CoOoO~NOOTh~WN

=
o
I

Table 3: First ten dimensionless eigenfrequengfies w/w, of the free transverse free (ffff) square plate modeled
by the ANCF-P48lsa with Poisson facter=0.3 for a number of mesh refinements. A relative plate thiskraf
H/L = 0.01 was used.

No.| 1x1 2x2 4x4 8x8 | 16x16 | 32x32 | 64x64 | Analytic
1.3999| 1.3918| 1.3797| 1.3747| 1.3727| 1.3714| 1.3701| 1.3646
2.2739| 2.0307| 2.0340| 2.0268| 2.0243| 2.0236| 2.0234| 1.9855
3.5948| 2.7949| 2.8104| 2.7875| 2.7805| 2.7785| 2.7778| 2.4591
4.1709| 3.5484| 3.6349| 3.6335| 3.6296| 3.6266| 3.6231| 3.5261
4.1709| 3.5484| 3.6349| 3.6335| 3.6296| 3.6266| 3.6231| 3.5261
10.328| 7.7428| 6.8913| 6.7999| 6.7651| 6.7550| 6.6834| 6.1900
10.328| 7.7428| 6.8913| 6.7999| 6.7651| 6.7545| 6.7516| 6.1900

— 6.6779| 6.5930| 6.6671| 6.6888| 6.6898| 6.7516| 6.4528
9.1662| 7.8723| 7.3146| 7.2603| 7.2289| 7.2163| 7.2079| 7.0181
13.517| 9.7664| 8.4230| 8.5262| 8.5237| 8.5178| 8.5123| 7.8191

Boo~v~ouoh~rwNek

As can be seen from the tables, the convergence of ANCF-Pi8isasiderably faster than
in the case of ANCF-P48. In order to emphasize the differeeteden plate elements ANCF-
P48 and ANCF-P48Ilsa, the convergence of the first mode (sdeftapode in Fig[#) is also
considered for thin plates, in which the relative platekhiss is assumed to 3¢/ =0.001.
Fig.[3 shows that ANCF-P48Isa is not sensitive in terms of threvergence of the first mode
of the thin plate. Accordingly, in the case of a thin plates tonvergence of the first mode
does not depend on a relative plate thicknes# pf., as such is the case for ANCF-P48. This
type of locking phenomenon is known as shear locking. It setirat the first bending mode
includes shear deformation, resulting in the slow conuergeof ANCF-P48. However both
plate elements are again converged to the same incorredt case to thickness locking. In this

10
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numerical example, two different relative plate thickressef //L =0.01 andH /L =0.001
were used. The eigenmodes for the plate element ANCF-P4@ shuatrated by using Chladni
figures (lines of nodes) in Figl 4, which agrees with earlggarted Chladni figures based on
SPACAR thin elements [17].

=1

10

10" - A -SPACAR (thin plate) B i A
——ANCF-P48: HIL=0.01 |~~~ e T sa
- + -ANCF-P48: H/L=0.001
—s— ANCF-P48lsa: H/L=0.01]

_s|[~® ~ANCF-P48lsa: H/L=0.001
10 T I I

101 102 3 4 5

Relative frequency error first eigenmode

10
Number of degrees of freedom

Figure 3: Convergences of the first mode normalized by aigal\golution for free (ffff) square plate as calculated
by the SPACAR, ANCF-P48 and ANCF-P48Isa with Poisson faetd).3. Two different relative plate thickness of
H/L=0.01 and H/I=0.001 were used.

1= F < N
JEOEE
R e B N I = B s

Q1= 1.3714 QZ= 2.0236 QS: 2.7785 94: 3.6266 QS: 3.6266

EHMARE

Q.= 6.6898 Q= 67550 Q= 6.7550 Q= 72163 Q = 85178

Figure 4: First 10 transverse vibration modes together thigir dimensionless frequencies for free (ffff) square
plate as calculated by the ANCF-P48Isa with a mesh 32 x 32 ais$éh factor=0.3. A relative plate thickness
of H/L =0.01 was used.

In [17], in-plane modes of ANCF-P48 are discussed. It is irtgodrto note that in-plane
modes of ANCF-P48 and ANCF-P48lsa are identical and, thexeforplane modes are not
depicted.

5.3 PURE BENDING TEST

In this section, introduced plate elements based on thdwbswdal coordinate formulation
are employed in a pure bending study. Fiddre 5 (a) illustratparticular case of pure bending
which may be obtained by using distributed twisting momeévitspplied on the free edges of
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the plate. According td [20], an identical displacementfiedn be created from the moments
M for the portionabced (Fig.[8 (a)) or by applying nodal forcexs\V/ L at cornersa,b,c andd
(Fig.[3 (b)). In the latter loading case, the in-plane sheamoinstant if the normal vector has
unit length [21]. Therefore, it can be assumed that in-pErear locking is not dominating in
this loading case. These examples are solved by using tiffeesdt plate elements: SPACAR
three node thin plate element (18 dofs), ANCF-P48 and ANCHs248

a) Distributed twisting moments M b) Nodal forces 2 ML

Figure 5: Particular cases of pure bending caused by distdktwisting momeni/ and nodal forces 2/ L.

The boundary conditions for the SPACAR element are relatiseaightforward to define:
all degrees of freedom at origin node O are fixed. In case of Aldlakes, the boundary condi-
tions are as follows: all degrees of freedom at node O are &xedpt forr; ,,r, , andrs .. The
meshes for the different loading cases are shown il Fig. 6.

c

a) Distributed twisting moments M b) Nodal forces 2 ML

Figure 6: Square mesh8&sx & for different loading cases.

Displacement at the asymptotic line for moderately thickigd is considered in this nu-
merical example. In the case of small deflections and moelgrttick plates, deflectiom in
directionZ can be defined for an anticlastic surfacel [20] as follows

B M
YT 9D —v)
whereD = FH?/(12(1 — v?)). The rotation at point about theX -axis can be defined as

(X2 —Y? (27)

M

?= Dli—v) V)Y (28)
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The parameters used in the plate example are as followsthiéng 1 m, Young’s modulus

E = 210 - 10°;, shear modulus; =

and the analytical solution from Eq. (28).

Table 4: Normalized displacement at point a (Fiddre 5) ofstipgare thin plate modeled by SPACAR, ANCF-P48

and ANCF-P48lsa elements. A relative plate thicknesd pf. =0.01 was used.

ﬁ, shear correction factdr, = 1, Poisson’s ratio
v = 0.3 and the distributed momendt = 1INm/m. The computed displacements and rotations
for elements SPACAR, ANCF-P48 and ANCF-P48I88 (. = 0.01 for thin plates and{/L =

0.2 for thick plates, shown in Tablg 4) are normalized by the il solution from Eq.[(2]7)

SPACAR ANCF-P48 ANCF-P48Isa
Mesh | Moment | Forces | Moment | Forces | Moment | Forces
w w w w w w
2x2 | 1.014122| 1.027241| 1.000000| 1.001077| 1.000000| 1.000400
4x4 | 1.003721] 1.012120] 1.000000| 1.001692| 1.000000| 1.000914
8x8 | 1.000873| 1.005163| 1.000000| 1.002260| 1.000000| 1.001839
16x16| 1.000210| 1.002256| 1.000000( 1.003832| 1.000000| 1.003622
32x32| 1.000052| 1.001033| 1.000000| 1.006936| 1.000000| 1.006809
64x64 | 1.000013| 1.000491, 1.000000| 1.011303| 1.000000| 1.011196

Table 5: Normalized rotation® and shear angles at point a (Figuré]s) of the square thin plate modeled by

SPACAR, ANCF-P48 and ANCF-P48Isa elements. A relativeepiaickness of7/L =0.01 was used.

SPACAR ANCF-P48 ANCF-P48lsa
Mesh | Moment Forces | Moment Forces | Moment Forces
[ P ¥ 4 ¥ 4
2x2 | 1.024127| 1.050475| 1.000000| 1.002648 1.000000| 1.000000
4x4 | 1.007862| 1.025814| 1.000000| 1.010236| 1.000000| 1.000268
8x8 | 1.003778| 1.013677| 1.000000| 1.009877 1.000000| 1.001040
16x16| 1.001864| 1.007268| 1.000000| 1.009454| 1.000000| 1.003054
32x32| 1.000929 1.003852| 1.000000| 1.011828| 1.000000, 1.007604
64x64 | 1.000464| 1.002035| 0.999999| 1.018134| 1.000000| 1.015315
7 v 7 it 7 7
2x2 - - 0.000000| 0.001390| 0.000000| 0.000000
4x4 - - 0.000000| 0.002339| 0.000000| 0.000802
8x8 - - 0.000000| 0.004130] 0.000000| 0.001794
16x16 - - 0.000000| 0.007841| 0.000000| 0.003677
32x32 - - 0.000000| 0.015277| 0.000000| 0.007244
64x64 - - 0.000000| 0.030209| 0.000000| 0.013967

The results from Tablel 4 show that in pure bending cases visthiliited moments all el-
ements present similar and accurately converged resuks &tthin structure is considered.
According to reference [20, p. 45], the lin€ for the thin structure should be linear based on
equivalence in the loading cases (Figure 5) but some diangs from the straight line can
be found near the edges in the case of moderately thick platate case of nodal forces at
corners, both plate elements based on the absolute nodalicai® formulation converge to
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incorrect results, whereas SPACAR thin elements convergernect results. Due to the fact
that both of the loading cases should produce similar digpheent fields for thin plates, it can
be concluded that shear deformation is overly estimatethie plements based on the absolute
nodal coordinate formulation. This can also be seen in Tabiéhere total rotatiop and shear
angley are shown. In this example, locking is not observed. Thikates that similar error can
be observed when using special material witf®. According to the previous static and eigen-
frequency analysis, the results are converged to incorescits due to thickness locking. An
interesting feature of the pure bending test is that it da@show inaccuracy due to thickness
locking or slow convergence due to shear locking. On therdthed, according to eigenfre-
guency analysis, the second mode (saddle mode) indicat&séiss locking (Tables 2 andl 3).
It can be noted that when using special materiat 0, all introduced plate elements lead to
acceptable results in studied examples where shear ddfommnot a dominating factor.

6 NUMERICAL TESTSFOR THICK PLATES

In the previous tests for thin plates, the SPACAR and fullyapagterized elements were
carefully considered. Based on the numerical results, itoeaoconcluded that SPACAR plate
elements perform well and fully parameterized plate elésmparform acceptably, only for the
case of pure bending. In this section, the behavior of tHg parameterized plate elements for
thick plates will be examined. The SPACAR plate element iam Kirchhoff theory, and
for this reason, it can not be used for the analysis of thiekegsl.

6.1 PURE BENDING TEST

The numerical example introduced in this section is idahtic the example shown in the
previous section, with exception to thé/L relation which is increased to 0.2. The results
show that in case of pure bending with distributed momenésnents give similar results for
thin and thick plate examples. The displacement due to rfodags at corners using thin plate
SPACAR converges to the analytical solution for thick plataisject to pure bending. For shear
deformable plate elements based on the absolute nodalicatedormulation, linexd is not
straight as can be seen in Hg. 7, where displacements duedtd force loading of ANCF-
P48lsa at lineud are shown. It is important to reiterate that the line sho@dtoaight/[20].

6.2 THICK SIMPLY SUPPORTED PLATE UNDER UNIFORM STATIC LOAD

In this section, a thick plate is constrained with a simplgsarted condition and is loaded by
the normal uniform force in the-direction as shown in Fi] 8. The simply supported boundary
condition is also depicted in the figure. In this example abmplete plate is modeled by using
the same boundary conditions as in previous sections fqlgisupported plates.

The deflection at the middle of the plate for a fully parametst ANCF-plate element is
compared to the analytical result, based on the Reissnedtiditiheory for a simply supported
plate. This solution is presented in[22] as follows

K

— 29
Wy Wy + kSGH ( )
wherew(’ is the Kirchhoff solution and/* is the Marcus moment that is as
1 > — dmn . mr X . nmY
MY = - DVl = — ZZ T ‘:‘L,—Z sin —— sin —- (30)

m=1n=1 L2
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Table 6: Normalized displacement at point a (Fidgdre 5) ofstingare thick plate modeled by SPACAR, ANCF-P48

and ANCF-P48lsa elements. A relative plate thicknesd pf. =0.2 was used.

SPACAR ANCF-P48 ANCF-P48Isa
Mesh | Moment | Forces | Moment | Forces | Moment | Forces
w w w w w w
2x2 | 1.014122| 1.027241| 1.000000| 1.204565| 1.000000| 1.160000
4x4 | 1.003721] 1.012120] 1.000000| 1.339463| 1.000000| 1.297473
8x8 | 1.000873| 1.005163| 1.000000| 1.459176| 1.000000| 1.404434
16x16| 1.000210| 1.002256| 1.000000| 1.542509| 1.000000| 1.470083
32x32| 1.000052| 1.001033| 1.000000| 1.602122| 1.000000| 1.511021
64x64 | 1.000013| 1.000491| 1.000000| 1.652936| 1.000000| 1.541885
2 2 2 2 2 2
2x2 | 1.024127| 1.050475| 1.000000| 1.065904| 1.000000| 1.000000
4x4 | 1.007862| 1.025814| 1.000000| 1.109816| 1.000000| 1.063898
8x8 | 1.003778| 1.013677| 1.000000| 1.171608| 1.000000| 1.133889
16x16| 1.001864| 1.007268| 1.000000| 1.215226| 1.000000| 1.179872
32x32| 1.000929| 1.003852| 1.000000| 1.237486| 1.000000| 1.205232
64x64 | 1.000464| 1.002035| 1.000000| 1.247965| 1.000000| 1.220813

The Kirchhoff solution for the case of a simply supportedelshe deflectionv obtained
using the Navier solution is (see for examplelinl[20]) asoieb:

mﬂX nwyY
= E E m2 sin (31)
7-‘-41)771 1 n=1 L2—i_l/V2 L W
where
m7TX mTY
. X Y 1 dXdy 32
Gon =T W / / Jsin— W (32)
1
= 26q ;iff m and n odd
7T mn

whereq(X,Y) is the uniformly distributed load, which is expressed as —5-10° H32 N/m?
for this example. The analytical solutions were computadgis: = n = 12, which resulted
in acceptable accuracy for normalized transverse dispianewithin four significant digits. In
the case of a finite element solution, a uniformly distriltead is defined as a consistent load

vector as follows:
1 1 1
Fext = / / / bTSJ dfd?]dc
-1J-1J-1

where the body force = [0, ¢/ H, 0]”. Other parameters are identical to previous sections.
The normalized transverse displacements at the centee gldlte are shown in tablEH 7-8.

In order to minimize the number of degrees of freedom, dosyahemetry for the plate under
constant loading is used in the numerical example shownleT& In double symmetry, the
boundary conditions of sub domain deeboundaryl’s are asir; = 0, r3, = 0 andr;, = 0
and for boundary ak,: 7, = 0, 7o, = 0 andrs, = 0. The boundarie$; andI'; are simply

(33)
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Figure 7: Displacements at asymptotic lind mesh64 x 64, ANCF-P48IsaH /L = 0.2.
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Figure 8: Simply supported plate, its sub dom@iand the coordinate system.

supported, thereforg andr, are fixed for boundary'; andr, andrs for I'y. It can be seen in
Table[® that the displacementsdiffer from displacements of the original problem (Table 8)
where the converged displacements coincide to within ttigies.

The relationship between Reissner-Mindlin and Kirchhoédhes (Eq.[(29)) is valid only
when Marcus moments are zero at the boundaries, which itiggameans the usage of "hard”
simply supported condition5 [22]. The results show thahim¢ase of thin plates, the conver-
gence of the plate element ANCF-P48 is slow; while the coremrg of element ANCF-P48Isa
is more likely independent from the factéf/L. However, both plate elements converge to
the same incorrect solution due to thickness locking. WhassBa effect is neglected, shear
deformation is overestimated in case of thick plates.
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Table 7: Normalized transverse displacemeratt center of the plate with ANCF-P48 loaded by a uniform lagdi

Mesh [ H/L=0.001] H/L=0.01] H/L=0.1] H/L=0.2
w w w w

2x2 | 0.0003151| 0.02998 | 0.5333 | 0.6821
4x4 | 0.005940 | 0.3208 | 0.7210 | 0.8002
8x8 | 0.1013 0.6885 | 0.7742 | 0.8534
16x16| 0.5428 0.7379 | 0.7938 | 0.8719
32x32| 0.7259 0.7435 | 0.8011 | 0.8772
64x64| 0.7417 0.7454 | 0.8032 | 0.8786

Table 8: Normalized transverse displacemenat center of the plate with ANCF-P48lIsa loaded by a uniform
loading.

Mesh | H/L=0.001] H/L=0.01] H/L=0.1| H/L=0.2
w w w w

2x2 | 0.8074 | 0.8077 | 0.8370 | 0.9107
4x4 | 07610 | 0.7614 | 0.79632| 0.8768
8x8 | 0.7475 | 0.7481 | 0.7922 | 0.8731
16x16| 0.7440 | 0.7449 | 0.7983 | 0.8768
32x32| 0.7432 | 0.7448 | 0.8021 | 0.8784
64x64| 0.7430 | 0.7456 | 0.8034 | 0.8789

7 RESULTSWHEN THICKNESS LOCKING ISREMOVED BY USING MODIFIED
MATERIAL

Thickness locking can be avoided through use of higher diamries for the displacement
field in the thickness direction or by modification of elastoefficients. In case of fully param-
eterized ANCF plate element, it is not easy to determine teesthanctions which can lead to a
higher-than-linear displacement field in the thicknessaion. However, in case of thin plates,
the assumption.. = 0 can be used to obtain modified in-plane elastic coefficientslows:

E vE
——; Diyg=Dy =——
11— .2 12 =70

Dy = (34)

Table 9: Normalized transverse displacemanat center of the plate with ANCF-P48lsa loaded by a uniform
loading, the symmetry of the plate is uséd/L = 0.2

Mesh ANCF-P48] ANCF-P48Isa
v v

2x2 (1x1) 0.6006 0.7353
4x4 (2x2) 0.7843 0.8625
8x8 (4x4) 0.8511 0.8711
16x16 (8x8) 0.8716 0.8766
32x32 (16x16) | 0.8772 0.8784
64x64 (32x32) | 0.8786 0.8789
128x128 (64x64) 0.8789 0.8790
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However, it shall be noted that this is only suitable for thlates and it does not produce
a solution based on fully 3-D elasticity. In Taljle] 10, thetften eigenfrequencies of a free
square plate for the ANCF-P48 element with modified mater@akdown. It can be concluded
that the lowest eigenfrequencies correspond to the anaBgults as well, but because of slow
convergence due to shear locking, the converged eigergneigs are not reached.

Table 10: First ten dimensionless eigenfregientles w/w of the free (ffff) square plate modeled by the ANCF-
P48 with Poisson factar =0.3 for a number of mesh refinements. Thickness locking iteegd by using plane
stress assumption. A relative plate thicknes&/gf. = 0.01 was used.

No.| 1x1 2x2 4x4 8x8 | 16x16 | 32x32 | 64x64 | Analytic
1.4383| 1.4381| 1.4234| 1.3793| 1.3655| 1.3632| 1.3618| 1.3646
2.2739| 2.2738| 2.0380| 1.9997| 1.9882| 1.9856| 1.9850| 1.9855
3.0985| 3.0982| 2.5636| 2.4859| 2.4646| 2.4596| 2.4584| 2.4591
71.982| 7.2347| 5.5339| 3.7007| 3.5388| 3.5230| 3.5184| 3.5261
71.982| 7.2347| 5.5339| 3.7007| 3.5388| 3.5230| 3.5184| 3.5261
17.985| 7.1124| 6.3970| 6.2335| 6.1955| 6.1862| 6.1900
- 17.985| 7.1124| 6.3970| 6.2335| 6.1955| 6.1862| 6.1900
— 54.568| 14.856| 7.2267| 6.5069| 6.4460| 6.4333| 6.4528
— 72.207| 16.632| 7.7644| 7.0798| 7.0156| 7.0017| 7.0181
- 72.382| 16.982| 8.5799| 7.8955| 7.8216| 7.8058| 7.8191

Boo~v~ououh~wNPR
|

Table 11: Average normalized transverse displacemerdasd rotationsg at the loaded edge for a square can-
tilevered plate loaded by a distributed moment or a disteithuransverse force at the free edge for a number of
mesh refinements and=0.3. Plate element ANCF-P48 is used and thickness lockimgglected by using plane
stress assumption.

Mesh | Moment | Transverse force

1x1 | 1.0000 0.7501

2x2 | 1.0000 0.9376

4x4 | 1.0001 0.9846

8x8 | 1.0003 0.9964
16x16| 1.0005 0.9996
32x32| 1.0011 1.0009
64x64| 1.0021 1.0020

It was excepted that the slow convergence in case of trasest@ice occurs when plane stress
assumption is used (Taklel11). However, at this point, tmeegence does not depend on the
Poisson value because Poisson effect is neglected whemmsidified elastic coefficients. In
case of the pure bending test, only minor differences waredavhen compared to the solution
of 3-D elasticity. This also supports the assumption thatthre bending test which was used
is free from thickness locking. However, the modified maieis not a remedy for the slow
convergence from in-plane shear locking.
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8 DISCUSSION ABOUT DIFFERENT LOCKINGSFOR FULLY PARAMETERIZED
PLATE ELEMENTSIN STUDIED BENCHMARKED PROBLEMS

The original fully parameterized plate element ANCF-P4&hv@tD elasticity suffers from
several different lockings, which include shear, thiclhasd curvature lockings. In the fully
parameterized plate element ANCF-P48Isa, shear and cueMaitkings are avoided with an
improved description of kinematics and by using low ordéerpolations for transverse shear
deformations. However, according to the results, the tiesk locking is still problematic for
ANCF-P48lsa element.

Shear locking is occurs from the unbalance of the base fam{i2]. This can be avoided
by using the Assumed Natural Strain (ANS) technique, whichresented for shells inl[2]. In
papers[[23, 15], the ANS technique is based on strains abitie malues instead of strains at the
Gaussian quadrature points. This is used because of thia&qtarasitic strains are zero at the
nodes|[[15]. To account for 3-D elasticity in the plate andidbemulations without thickness
locking, the transverse normal strains have to be intetpdlat least linearly over the thickness
direction [24]. In contrast to other mentioned locking® #rror due to thickness locking does
not decrease with mesh refinements in the in-plane cooedindihe plate element ANCF-P48
also suffers from curvature locking due to shrinking in thickness direction. This locking
effect is also mentioned to be problematic in other contmyaliate/shell elements with coarse
meshes and initially curved elements(in|[15]. In ANCF-P48tsavature locking is avoided by
using an improved description for kinematics.

When using the special case0 in 3-D elasticity, or using a modified material stiffness
matrix, thickness locking can be avoided. Therefore, bédkepelements converge to the ana-
Iytic solution in most thin plate cases since coupling bemvbending and shear deformation
is neglected. As a conclusion, in case of thin plates, thesgdal modified material which was
used for 3-D plates can also be used to approximate a 3-Diaoliar thin plates modeled by
fully parameterized plate elements. It shall be noted tmantodified material stiffness matrix
used in this study differs from the simplified material use(lil]. The same simplified mate-
rial based on the diagonal material stiffness maltix= diag F, £, £, G, G, G) is also used
for the continuum beam element [18], leading to similar tssas obtained with beam theory.
However, in case of plates/shells, such a simplified caristi relation will obviously lead to
an incorrect solution, which can be seen from the resul{&dh [

The results of benchmarked problems show that shear lockstgongly dependent on thick-
ness whereas thickness locking is independent on thickngstrongly dependent on the Pois-
son effect. Due to thickness locking, the results differ byt 18 % from the analytical results,
see TableBl1. However, for in-plane modes in the eigenfrexyuanalyses, thickness locking
is difficult to recognize (TablesI[2[3]10). The pure bendiegt that was used in the study is
interesting because it can be used to question the accurdoy shear deformation because it
neither shows shear nor thickness locking (T@ble5). In thve pending test, the same amount
of error for shear angles occurs for the special case-6f0 or when the modified material are
used. In other words, when= 0, both of the ANCF plate elements will pass all of the plate
tests except for the saddle test and the simply supportéel gelst under uniform static load.

9 CONCLUSIONS

In this study, rectangular fully parameterized plate eletmdased on the absolute nodal
coordinate formulation were compared in terms of numers@mples. Elements under in-
vestigation were a fully parameterized plate element andly parameterized plate element
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with linearized transverse shear angles. The numericahpks demonstrate that the plate
elements suffer from different lockings, however, thicksniécking is dominant. The plate el-
ement with linearization of shear angles overcomes the stmwergence on account of shear
locking and curvature locking. Due to thickness lockingthbelements based on the absolute
nodal coordinate formulation converged to the same incbs@ution in most of the numerical
examples. The results also show that in case of thin and phat&s, the shear deformation was
overestimated in both plate elements.
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