
MULTIBODY DYNAMICS 2009, ECCOMAS Thematic Conference
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Abstract. Two formulations for a flexible 3-D quadrilateral moderatelythick plate element
based on the absolute nodal coordinate formulation are compared. The two approaches consist
of a fully parameterized plate element and a fully parameterized plate element with linearized
transverse shear angles to overcome slow convergence and curvature locking. For the sake of
verification of the formulations and numerical tests, a thinplate element based on a classical
Discrete Kirchhoff Triangle in large displacement frameworkis also utilized. A comparison
is accomplished through use of the comprehensive set of small deformation static tests and
eigenfrequency analyses. These results are benchmarked toknown analytical solutions.

It is shown that plate elements based on absolute nodal coordinate formulation reach the
same result and convergence for pure bending loads. However,under shear deformation load-
ing, slow convergence due to shear locking occurs in the caseof an original plate element. The
numerical examples indicate that thickness locking (known also as Poisson locking) is a prob-
lem for both of the plate elements based on absolute nodal coordinate formulation. Thickness
locking arises when full 3-D elasticity is employed in the fully parameterized elements. All
computations are implemented using MATLAB.

1

marko.matikainen@lut.fi
aki.mikkola@lut.fi
a.l.schwab@tudelft.nl


Marko K. Matikainen, A. L. Schwab and Aki M. Mikkola

1 INTRODUCTION

The nonlinear continuum plate/shell elements have been under active research for more than
four decades. Usually, these conventional continuum plate/shell elements utilize rotation pa-
rameters instead of slope vectors. It has been previously introduced that continuum shell el-
ements, with fully three-dimensional stresses and strains, can be degenerated to shell element
behavior such that the kinematics and constitutive assumptions of shells are acceptable, see
for example [1]. This isoparametric continuum shell element (known as A-I-Z shell element)
is based on the Mindlin/Reisssner hypothesis. The element includes 3 translational and 2 rota-
tional parameters at a node. However, it is known that the A-I-Z shell element suffers from shear
locking, which can be alleviated with the introduction of separate linear interpolations for trans-
verse shear deformations in a four node shell element (knownas MITCH4 shell element) [2].
The original MITCH4 element is derived from the A-I-Z shell element using the same five node
parameters, the only difference is that shear locking is avoided by using mixed interpolation. To
be able to use general 3-D elasticity without making any modifications due to degeneration such
as condensation of thickness strain is worth the addition ofthickness deformation in the contin-
uum shell formulation. Additionally, in case of large strains, the thickness deformation has to be
taken into account. However, the interpolation for displacement in the thickness direction must
be larger than linear, otherwise, with fully 3-D elasticityit is a source of thickness locking. Due
to this fact, the 7-parameter formulation is introduced [3]which means there will be two extra
parameters at a node, allowing for linear stretching in the thickness direction. Also, the shell
element based on MITCH4 formulation, which uses only 22 degrees of freedom including five
generalized displacements at node and two for linear thickness stretching, has been introduced
in [4]

The absolute nodal coordinate formulation (ANCF) is a finite element procedure that was
recently proposed for flexible multibody applications by Shabana [5]. The formulation can be
applied to conventional as well as shear deformable beam andplate elements. In the shear de-
formable elements, the beam and plate elements can be described as continuum by using the
positions and position gradients as nodal coordinates. In contrast to conventional beam and
plate elements, position gradients of the material point within the element are derivatives of the
displacement field. In continuum beam and plate/shell elements, the kinematics and constitu-
tive assumptions for conventional beam and plates/shell theories can be relaxed. Because of the
material description, the strain and stress quantities areframe-indifferent, leading to the possi-
bility to describe large deformation problems. This can be accomplished, for example, by using
a nonlinear material model based on hyperelasticity [6, 7].In the absolute nodal coordinate
formulation, the description of the material point is described through use of shape functions
and nodal coordinates. It is worth noting that this description accounts for large rigid body ro-
tations of the finite elements. This leads to a constant mass matrix in two and three dimensional
applications and is a unique feature among the beam and plateelements based on the absolute
nodal coordinate formulation [8].

The first ANCF plate element was developed by Shabana and Christensen [9]. This plate
element was based on the classical (Kirchoff-Love) plate theory while rotation parameters were
used only to describe the bending deformation. In order to account for the shear deformation
and thickness deformation, in case of thick plates, the fully parameterized quadrilateral plate el-
ement was developed [10]. Full-parameterization indicates usage of the position vector and all
position vector gradients as variables at nodal locations.Another fully parameterized quadri-
lateral plate element was introduced to overcome the slow convergence due to shear locking
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and curvature locking [11]. It is noteworthy that the fully parameterized plate elements under
investigation are based on an identical approximation for in-plane, the only difference being the
description for kinematics in the transversal direction. These fully parameterized plate elements
are based on continuum mechanics theory and fully three-dimensional strain and stress tensors
are employed in the formulations. As a result, these continuum elements should be applica-
ble for the analyses of thin and thick plates and any general material law based on continuum
mechanics can be used. The main difference between conventional finite elements and ANCF
elements is that the mass matrix is constant for ANCF elements. This is computationally ef-
ficient if explicit integrators are used. Additionally, there are no geometrical approximations
included in the ANCF elements [12], which is seldom the case for conventional structural finite
elements.

The purpose of this study is to make comparisons between two moderately thick plate el-
ements based on the absolute nodal coordinate formulation.These fully parameterized plate
elements are employed in simple numerical examples in whichadvantages and disadvantages
of the elements can be demonstrated. Verification of the two elements is accomplished through
numerical examples in framework of thin and thick plates. Inthis study, the elastic forces
of fully parameterized elements are made by using full Gaussian integration to show that the
elements are performing properly.

2 KINEMATICS OF FULLY-PARAMETERIZED PLATE ELEMENT

In this section, the fully parameterized plate element by Mikkola and Shabana [10] will be
shortly revisited. This four-node quadrilateral plate element, which is denoted in this study
as ANCF-P48, consists of 48 degrees of freedom. Three degreesof freedom are for position
and nine are for gradients at each node. In elements based on the absolute nodal coordinate
formulation, kinematics is expressed by using spatial shape functions and global coordinates,
similar to conventional solid elements. The position of an arbitrary particle in the isoparametric
fully parameterized plate element can be interpolated in the global fixed frame as follows:

r = Sm(x)e, (1)

whereSm is a shape function matrix expressed using physical elementcoordinatesx and
e = e(t) is the vector of nodal coordinates. The kinematics of the element on the reference
configuration at timet = 0 can be described asr0 = Sm(x)e0, wheree0 = e(0). In Fig. 1,
the fully parameterized undeformed plate element at current configuration with dimensions of
width lx, lenghtly and thicknesslz are shown.

The vector of nodal coordinates at nodei can be written as follows:

e(i) =
[

r(i)T

r
(i)T

,x r
(i)T

,y r
(i)T

,z

]T

; i = 1, . . . , 4 (2)

wherer is the position vector of the element andx, y andz are physical coordinates of the
element. In this study, the following notation for partial derivatives is used:

r(i)
,α =







r
(i)
1,α

r
(i)
2,α

r
(i)
3,α






=

∂r(i)

∂α
; α = x, y, z.
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Figure 1: Undeformed plate element with its dimensions in current configuration.

The interpolation functions for position are based on the following set of basis polynomials

[1, x, y, z, xz, yz, yx, x2, y2, x3, y3, x2y, y2x, xyz, x3y, xy3] (3)

Note that the basis polynomials in Eq. (3) are incomplete, and for this reason, the element
has linear terms only in transverse coordinatez. Accordingly, the displacement distribution
is linear in the element’s transverse direction. The interpolation for position is cubic in the in-
plane coordinatesx andy. The shape functions can be presented through use of local normalized
coordinates, such asξ, η, ζ ∈ [−1 . . . 1], and are listed below:

S1 =
(−1+ξ)(1−η)(ξ2+ξ+η2+η−2)

8
, S2 = lx (1−η)(1+ξ)(−1+ξ)2

16
,

S3 = ly (1−ξ)(η+1)(−1+η)2

16
, S4 = lz ζ (−1+ξ)(−1+η)

8
,

S5 =
(1+ξ)(−1+η)(ξ2−ξ+η2+η−2)

8
, S6 = lx (1−ξ)(−1+η)(1+ξ)2

16
,

S7 = ly (1+ξ)(η+1)(−1+η)2

16
, S8 = lz ζ (1+ξ)(1−η)

8
,

S9 =
(1+ξ)(−η−1)(ξ2−ξ+η2−η−2)

8
, S10 = lx (−1+ξ)(η+1)(1+ξ)2

16
,

S11 = ly (1+ξ)(−1+η)(η+1)2

16
, S12 = lz ζ (1+ξ)(η+1)

8
,

S13 =
(−1+ξ)(η+1)(ξ2+ξ+η2−η−2)

8
, S14 = lx (1+ξ)(η+1)(−1+ξ)2

16
,

S15 = ly (−1+ξ)(1−η)(η+1)2

16
, S16 = lz ζ (η+1)(1−ξ)

8

(4)

where relationsξ = 2x/lx, η = 2y/ly andζ = 2z/lz when the physical coordinate system
x, y, x is placed along the middle of the element. These shape-functions can be represented in
matrix form as:

Sm =
[

S1I S2I S3I . . . S16I
]

(5)

whereI is a 3× 3 identity matrix. Due to the isoparametric property of the element, the
kinematics (1) can also be expressed in terms of local normalized coordinatesr = Sm(ξ, η, ζ)e.

The strains can be obtained by using the Green strain tensorE which can be written for the
plate element as

E =
1

2
(∇rT∇r − I), (6)
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where∇r is the deformation gradient. The deformation gradient can be shown through the
relationship of deformations between the initialr0 = Sme(t = 0) = Sme0 and current config-
urationr as follows:

∇r =
∂r

∂r0

=
∂r

∂x

(

∂r0

∂x

)−1

. (7)

Using the engineering notations, the strains can be writtenin vector form as

ε = [Exx Eyy Ezz 2Eyz 2Exz 2Exy]
T (8)

3 KINEMATICS OF PLATE ELEMENT WITH LINEARIZED SHEAR ANGLES

The plate element with linearized shear angles [11], denoted in this study as ANCF-P48lsa,
leads to an improved definition of the elastic forces, since the use of linearized shear angles
overcomes the shear locking and curvature locking associated with the plate element. The plate
element with linearized shear angles is based on the same in-plane interpolation functions as
the original fully parameterized plate element [10]. When compared to the original element
ANCF-P48, however, the fiber deformation of the plate elementANCF-P48lsa is modified in
order to linearize the transverse shear deformations. Thisapproach for avoid shear locking is
well known among classical MITCH shell elements [2]. The sameeffect can also be avoided by
the Hellinger-Reissner variational principle, which has been applied to the ANCF beam element
in [13]. Slow convergence due to shear locking can also be improved by using additional shape
function terms, which are employed in higher order beam elements based on the absolute nodal
coordinate formulation [14]. In plate element ANCF-P48lsa,the description of an arbitrary
particle in the element can be expressed as

re = r

∣

∣

∣

z=0
+ A1sA2sn̂ z. (9)

The vectorn̂ describes the unit transverse vector of the mid-plane, which can be expressed
with the aid of slope vectors as follows:

n̂ =
r,x × r,y

‖r,x × r,y‖

∣

∣

∣

∣

∣

z=0

, (10)

The vectorn̂ is normal to mid-plane and, therefore, it is invariant with respect to transverse
shear deformation. The normalization leads to a cumbersomeequation, but it is worth noting
that the error due to shrinking will be avoided simultaneously. The matricesA1s andA2s are
used to describe the transverse shear deformation. These matrices can be obtained by using the
Rodrigues rotation formula and by assuming that the shear angles are small as follows:

A1s = I + r̃,x sin γ1 + 2 r̃2
,x sin2 γ1

2
≈ I + r̃,x γ1, (11a)

A2s = I + r̃,y sin γ2 + 2 r̃2
,y sin2 γ2

2
≈ I + r̃,y γ2 (11b)

whereγ1 andγ2 are the shear angles with respect to slopesr,x andr,y that define the direction
of rotation. A skew-symmetric matrix̃r,x is determined by the unit vectorr̂,x and, respectively,
a skew-symmetric matrix̃r,y is determined by the unit vectorr,y. Utilizing the property of the
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absolute nodal coordinate formulation, the shear anglesγ1 andγ2 can be derived from the slope
vectors as follows:

sin γ1 =
rT

,y r,z

‖r,y‖ ‖r,z‖
≈ γ1 and sin γ2 = −

rT
,x r,z

‖r,x‖ ‖r,z‖
≈ γ2. (12)

In this case, shear angles in the element will be interpolated in-plane by fourth order poly-
nomials. However, it is known that nonlinear interpolations for shear deformations can lead to
slow convergence, which can be alleviated by linear interpolation for transverse shear deforma-
tions [2]. For plate element ANCF-P48lsa, a slightly different approach for the interpolation of
shear deformation is employed. To guarantee that parasiticstrain distribution is zero, the nodal
values are used instead of sampling points [15]. Therefore,the bilinear interpolation for the
shear angles are used i.e. the shear angles are interpolatedlinearly over the length and width of
the element using the following equations:

γlin
1 =

4
∑

i=1

N (i) γ
(i)
1 and γlin

2 =
4

∑

i=1

N (i) γ
(i)
2 (13)

whereN (i) are bilinear shape functions at mid-plane. With the linearized Rodrigues rotation
formula and the shear angles, the rotation matricesA1sandA2s take the form:

A1s≈ I + r̃,x γlin
1 and A2s≈ I + r̃,y γlin

2 . (14)

According to [11], in case of small displacements and when elements at current configu-
ration are in axis-parallel to reference configuration, unit vectors can be expressed byr̃,x =
[

1 0 0
]T

andr̃,y =
[

0 1 0
]T

. Using this simplification, the product of shear matrices
can be expressed as follows:

A1sA2s ≈









1 0 γlin
2

0 1 −γlin
1

−γlin
2 γlin

1 1









, (15)

where quadratic termγlin
1 γlin

2 is neglected. The strains can be obtained by using the Green
strain (6). As a result, the strain components can be expressed as:

Exx =
1

2

(

rT
e,xre,x − 1

)

, Eyy =
1

2

(

rT
e,yre,y − 1

)

,

Exy =
1

2

(

rT
e,xre,y

)

, Exz =
1

2

(

rT
e,xre,z

)

, Eyz =
1

2

(

rT
e,yre,z

)

.
(16)

The strain componentEzz in the element thickness direction can not be defined with kine-
matics, as described byre (9). The strain componentEzz can be obtained from kinematicsr of
the fully parameterized plate element (1) as follows:

Ezz =
1

2

(

rT
,zr,z − 1

)

. (17)

The strain componentEzz can also be interpolated with the use of bilinear shape functions,
which can be used to avoid the curvature locking (also calledtrapezoidal locking), see for
example [15, 16]. Therefore, the bilinear strain distribution Elin

zz along the length and width
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of the element is used in this study. The strain components can be shown in vector formε as
follows:

ε =
[

Exx Eyy Elin
zz 2Exy 2Exz 2Eyz

]T

(18)

where kinematics with linearized shear angles is used for all strain components exceptElin
zz .

4 ELASTIC FORCES, EXTERNAL FORCES AND MASS MATRIX

In the ANCF elements, the general hyperelastic materials canbe used in the definition of the
elastic forces. However, in this work, 3-D elasticity for the fully parameterized plate elements
is described by using the simple linear elastic St. Venant-Kirchhoff material, which is valid
in small strain regime. The constitutive relation in case oflinear elastic St. Venant-Kirchhoff
material can be expressed as

S = 4D : E (19)

where the fourth order tensor4D includes the properties of the material. In case of an elastic
isotropic material, the relation between the second Piola-Kirchhoff stress tensor and the Green
strain tensor takes the form

S = λItr(E) + 2GE, (20)

whereλ andG are the Lamé elastic constants. The strain energy of one plate element can be
written as

Wint =
1

2

∫

V

εT Dε dV (21)

and the vector of elastic forces can be defined as

F e =
∂Wint

∂e

T

. (22)

The externally applied forces can be determined from

F ext =

∫

V

bT Sm dV. (23)

whereb is the vector of body forces. In the special case of gravity, the body forces can be
written asb = ρg whereg is the field of gravity. Using the definition for kinematics ofthe fully
parameterized plate element (1), the absolute nodal coordinate formulation leads to a constant
mass matrix as follows:

M =

∫

V

ρST
mSm dV. (24)

In case of a linearized shear angle, the mass matrix would no longer be constant if the same
interpolation, as for the elastic forces, is used (9). However, this error is due to inconsistencies
between kinematics and kinetic energy and will decrease in value with the use of finer meshes.
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5 NUMERICAL TESTS FOR THIN PLATE

The two plate elements presented in this study account for the transverse shear deformation
and nonlinear strain-displacement relationship. For thisreason, elements are not restricted to
thin plate and small displacement, although the first numerical verification is carried out in this
regime. The convergence is studied by mesh refinement for static and eigenvalue tests. The
numerical tests, such as the cantilever plate and eigenfrequency analyses, used in this study are
originally introduced by Schwab et. al [17] for verificationof thin ANCF plate. The regular
meshesn × n, as shown in Fig. 2, are used.

Figure 2: Loading, boundaries and uniform 4× 4 mesh of a square cantilevered plate with quadrilateral elements.

5.1 CANTILEVER PLATE

The first numerical test is a linear static analysis of an infinitely-wide cantilever plate under
two different loading conditions. The first loading case is adistributed moment and the second
is a distributed transverse force along the free edge of the structure. The numerical solutions
are compared to the analytical exact solutions for transverse displacement, which in the case of
static analysis are found to be as follows:

wexact =
ML2

2D
+

FL2

3D
and ϕexact =

ML

D
+

FL2

2D
(25)

whereM is distributed moment,F is distributed force along the loaded edge andD is the
elastic plate constant defined as followsD = EH2/(12(1 − ν2)). The results of the compu-
tations for the transverse displacementw and rotation along the loaded edge abouty-axis ϕ
are normalized with respect to exact analytical results. The rotation angleϕ which defines the
rotation due to shear and bending for ANCF plate elements, canbe expressed as follows:

ϕ = arccos
rT

0,zr,z

‖r0,z‖ ‖r,z‖
(26)

wherer0 is defined such thate0 is vector of nodal coordinates at the initial configuration.
In this example,r0,z = [0, 0, 1]T is the transverse slope at the initial undeformed configuration.
The test is modeled with the following parameters: lengthL = 1 m, heightH = 0.01m,
width W = 1 m, Young’s modulusE = 210 · 109 N

m2 , shear modulusG = E
2(1+ν)

, shear
correction factorks = 1, Poisson’s ratioν = 0.3, the distributed momentM = 1Nm/m and
forceF = 1N/m. At the clamped end, the boundary condition is defined by fixing all the nodal
degrees of freedom atΓ1. In reference [17], the componentr2,y was unfixed in the clamped
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boundary to allow the in-plane deformation. However, in this study, the slow convergence
due to the fixed componentr2,y was not observed. The analytical solutions are defined for a
cantilever plate with infinite widthW . For this reason, the in-plane componentr3,y is fixed
in order to avoid in-plane rotation along the boundariesΓ2 andΓ4. However, transverse shear
deformationγyz is still unconstrained in order to avoid slow convergence. The boundaryΓ3 is
unconstrained while it is loaded by the distributed forceF or momentM .

Table 1: Average normalized transverse displacementsw and rotationsϕ at the loaded edge for a square can-
tilevered plate loaded by a distributed moment or a distributed transverse force at the free edge for number of mesh
refinements and two different element types withν=0.3.

Moment Transverse force
Mesh ANCF–P48 ANCF–P48lsa ANCF–P48 ANCF–P48lsa

w w w w
1x1 0.8164 0.8164 0.6123 0.8164
2x2 0.8164 0.8164 0.7654 0.8164
4x4 0.8166 0.8164 0.8039 0.8165
8x8 0.8169 0.8165 0.8137 0.8166

16x16 0.8174 0.8168 0.8167 0.8168
32x32 0.8185 0.8172 0.8183 0.8173
64x64 0.8205 0.8181 0.8204 0.8182

ϕ ϕ ϕ ϕ
1x1 0.8164 0.8164 0.8164 0.8164
2x2 0.8165 0.8164 0.8165 0.8164
4x4 0.8167 0.8164 0.8166 0.8164
8x8 0.8170 0.8166 0.8169 0.8166

16x16 0.8175 0.8168 0.8174 0.8168
32x32 0.8186 0.8173 0.8185 0.8173
64x64 0.8207 0.8182 0.8206 0.8182

As can be seen from results in Table 1, the chosen boundary conditions lead to acceptable
results, as errors are almost equal in both loading cases. Incase of the transverse loading force,
the convergence of ANCF-P48lsa is significantly faster than the original fully parameterized
plate element. This is due to shear locking, which is avoidedby linearization of transverse shear
angles in ANCF-P48lsa. However, both elements converge to anincorrect solution under both
loading cases. The reason for this is thickness locking, which is due to low order interpolation
approximation in the element transverse direction in full 3-D elasticity. In case of spatial beam
elements, locking can be avoided by neglecting Poisson effect with ν=0, as explained in [18].
Correspondingly, in case of continuum plates and shells, different modified material laws can
be used to overcome the thickness locking for thin plate/shells [19].

5.2 EIGENFREQUENCIES AND CHLADNI FIGURES

The second test is an eigenfrequency analysis with free boundaries. The eigenfrequencies
ω are nondimensionalized by the frequencyω0 = π2

√

D/ρHL4 and the analytical results
for eigenvalue analysis are obtained from reference [17]. The eigenmodes will be presented
as Chladni figures, where lines of nodes without displacements are shown. Studies of the thin
plate SPACAR element and the fully parameterized plate element ANCF-P48 are also presented
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in [17]. In this numerical example, a relative plate thickness ofH/L =0.01 was used. The
eigenfrequencies for the case of free boundary conditions are expressed in Tables 2-3 where
in-plane modes denoted by – are not shown.

Table 2: First ten dimensionless eigenfrequenciesΩ = ω/ω0 of the free transverse free (ffff) square plate modeled
by the ANCF-P48 with Poisson factorν =0.3 for a number of mesh refinements. A relative plate thickness of
H/L = 0.01 was used.

No. 1x1 2x2 4x4 8x8 16x16 32x32 64x64 Analytic
1 1.4383 1.4381 1.4245 1.3870 1.3739 1.3715 1.3701 1.3646
2 2.2739 2.2738 2.0761 2.0396 2.0268 2.0241 2.0235 1.9855
3 3.5947 3.5944 2.9253 2.8184 2.7867 2.7798 2.7781 2.4591
4 71.994 7.9946 5.5712 3.8034 3.6448 3.6284 3.6234 3.5261
5 71.994 7.9946 5.5712 3.8034 3.6448 3.6284 3.6234 3.5261
6 – 18.036 7.8878 7.0253 6.8120 6.7653 6.6851 6.1900
7 – 18.036 7.8878 7.0253 6.8120 6.7653 6.7541 6.1900
8 – 54.593 14.9194 7.4395 6.7585 6.6985 6.7541 6.4528
9 – 72.227 16.687 7.9823 7.2925 7.2245 7.2095 7.0181
10 – 72.524 17.665 9.3391 8.6230 8.5354 8.5162 7.8191

Table 3: First ten dimensionless eigenfrequenciesΩ = ω/ω0 of the free transverse free (ffff) square plate modeled
by the ANCF-P48lsa with Poisson factorν =0.3 for a number of mesh refinements. A relative plate thickness of
H/L = 0.01 was used.

No. 1x1 2x2 4x4 8x8 16x16 32x32 64x64 Analytic
1 1.3999 1.3918 1.3797 1.3747 1.3727 1.3714 1.3701 1.3646
2 2.2739 2.0307 2.0340 2.0268 2.0243 2.0236 2.0234 1.9855
3 3.5948 2.7949 2.8104 2.7875 2.7805 2.7785 2.7778 2.4591
4 4.1709 3.5484 3.6349 3.6335 3.6296 3.6266 3.6231 3.5261
5 4.1709 3.5484 3.6349 3.6335 3.6296 3.6266 3.6231 3.5261
6 10.328 7.7428 6.8913 6.7999 6.7651 6.7550 6.6834 6.1900
7 10.328 7.7428 6.8913 6.7999 6.7651 6.7545 6.7516 6.1900
8 – 6.6779 6.5930 6.6671 6.6888 6.6898 6.7516 6.4528
9 9.1662 7.8723 7.3146 7.2603 7.2289 7.2163 7.2079 7.0181
10 13.517 9.7664 8.4230 8.5262 8.5237 8.5178 8.5123 7.8191

As can be seen from the tables, the convergence of ANCF-P48lsais considerably faster than
in the case of ANCF-P48. In order to emphasize the difference between plate elements ANCF-
P48 and ANCF-P48lsa, the convergence of the first mode (see topleft mode in Fig. 4) is also
considered for thin plates, in which the relative plate thickness is assumed to beH/L =0.001.
Fig. 3 shows that ANCF-P48lsa is not sensitive in terms of the convergence of the first mode
of the thin plate. Accordingly, in the case of a thin plate, the convergence of the first mode
does not depend on a relative plate thickness ofH/L, as such is the case for ANCF-P48. This
type of locking phenomenon is known as shear locking. It seems that the first bending mode
includes shear deformation, resulting in the slow convergence of ANCF-P48. However both
plate elements are again converged to the same incorrect result, due to thickness locking. In this
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numerical example, two different relative plate thicknesses ofH/L =0.01 andH/L =0.001
were used. The eigenmodes for the plate element ANCF-P48lsa are illustrated by using Chladni
figures (lines of nodes) in Fig. 4, which agrees with earlier reported Chladni figures based on
SPACAR thin elements [17].
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SPACAR (thin plate)
ANCF−P48: H/L=0.01
ANCF−P48: H/L=0.001
ANCF−P48lsa: H/L=0.01
ANCF−P48lsa: H/L=0.001

Figure 3: Convergences of the first mode normalized by analytical solution for free (ffff) square plate as calculated
by the SPACAR, ANCF-P48 and ANCF-P48lsa with Poisson factorν=0.3.Two different relative plate thickness of
H/L=0.01 and H/L=0.001 were used.

Figure 4: First 10 transverse vibration modes together withtheir dimensionless frequencies for free (ffff) square
plate as calculated by the ANCF-P48lsa with a mesh 32 x 32 and Poisson factorν=0.3. A relative plate thickness
of H/L =0.01 was used.

In [17], in-plane modes of ANCF-P48 are discussed. It is important to note that in-plane
modes of ANCF-P48 and ANCF-P48lsa are identical and, therefore, in-plane modes are not
depicted.

5.3 PURE BENDING TEST

In this section, introduced plate elements based on the absolute nodal coordinate formulation
are employed in a pure bending study. Figure 5 (a) illustrates a particular case of pure bending
which may be obtained by using distributed twisting momentsM applied on the free edges of
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the plate. According to [20], an identical displacement field can be created from the moments
M for the portionabcd (Fig. 5 (a)) or by applying nodal forces2ML at cornersa,b,c andd
(Fig. 5 (b)). In the latter loading case, the in-plane shear is constant if the normal vector has
unit length [21]. Therefore, it can be assumed that in-planeshear locking is not dominating in
this loading case. These examples are solved by using three different plate elements: SPACAR
three node thin plate element (18 dofs), ANCF-P48 and ANCF-P48lsa.

Figure 5: Particular cases of pure bending caused by distributed twisting momentM and nodal forces 2ML.

The boundary conditions for the SPACAR element are relatively straightforward to define:
all degrees of freedom at origin node O are fixed. In case of ANCF-plates, the boundary condi-
tions are as follows: all degrees of freedom at node O are fixedexcept forr1,x,r2,y andr3,z. The
meshes for the different loading cases are shown in Fig. 6.

Figure 6: Square meshes8 × 8 for different loading cases.

Displacement at the asymptotic line for moderately thick plates is considered in this nu-
merical example. In the case of small deflections and moderately thick plates, deflectionw in
directionZ can be defined for an anticlastic surface [20] as follows

w =
M

2D(1 − ν)
(X2 − Y 2) (27)

whereD = EH3/(12(1 − ν2)). The rotation at pointa about theX-axis can be defined as

ϕ =
M

D(1 − ν)
Y (28)
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The parameters used in the plate example are as follows: length L = 1 m, Young’s modulus
E = 210 · 109 N

m2 , shear modulusG = E
2(1+ν)

, shear correction factorks = 1, Poisson’s ratio
ν = 0.3 and the distributed momentM = 1Nm/m. The computed displacements and rotations
for elements SPACAR, ANCF-P48 and ANCF-P48lsa (H/L = 0.01 for thin plates andH/L =
0.2 for thick plates, shown in Table 4) are normalized by the analytical solution from Eq. (27)
and the analytical solution from Eq. (28).

Table 4: Normalized displacement at point a (Figure 5) of thesquare thin plate modeled by SPACAR, ANCF-P48
and ANCF-P48lsa elements. A relative plate thickness ofH/L =0.01 was used.

SPACAR ANCF-P48 ANCF-P48lsa
Mesh Moment Forces Moment Forces Moment Forces

w w w w w w
2x2 1.014122 1.027241 1.000000 1.001077 1.000000 1.000400
4x4 1.003721 1.012120 1.000000 1.001692 1.000000 1.000914
8x8 1.000873 1.005163 1.000000 1.002260 1.000000 1.001839

16x16 1.000210 1.002256 1.000000 1.003832 1.000000 1.003622
32x32 1.000052 1.001033 1.000000 1.006936 1.000000 1.006809
64x64 1.000013 1.000491 1.000000 1.011303 1.000000 1.011196

Table 5: Normalized rotationsϕ and shear anglesγ at point a (Figure 5) of the square thin plate modeled by
SPACAR, ANCF-P48 and ANCF-P48lsa elements. A relative plate thickness ofH/L =0.01 was used.

SPACAR ANCF-P48 ANCF-P48lsa
Mesh Moment Forces Moment Forces Moment Forces

ϕ ϕ ϕ ϕ ϕ ϕ
2x2 1.024127 1.050475 1.000000 1.002648 1.000000 1.000000
4x4 1.007862 1.025814 1.000000 1.010236 1.000000 1.000268
8x8 1.003778 1.013677 1.000000 1.009877 1.000000 1.001040

16x16 1.001864 1.007268 1.000000 1.009454 1.000000 1.003054
32x32 1.000929 1.003852 1.000000 1.011828 1.000000 1.007604
64x64 1.000464 1.002035 0.999999 1.018134 1.000000 1.015315

γ γ γ γ γ γ
2x2 – – 0.000000 0.001390 0.000000 0.000000
4x4 – – 0.000000 0.002339 0.000000 0.000802
8x8 – – 0.000000 0.004130 0.000000 0.001794

16x16 – – 0.000000 0.007841 0.000000 0.003677
32x32 – – 0.000000 0.015277 0.000000 0.007244
64x64 – – 0.000000 0.030209 0.000000 0.013967

The results from Table 4 show that in pure bending cases with distributed moments all el-
ements present similar and accurately converged results when a thin structure is considered.
According to reference [20, p. 45], the linead for the thin structure should be linear based on
equivalence in the loading cases (Figure 5) but some discrepancies from the straight line can
be found near the edges in the case of moderately thick plates. In the case of nodal forces at
corners, both plate elements based on the absolute nodal coordinate formulation converge to
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incorrect results, whereas SPACAR thin elements converge tocorrect results. Due to the fact
that both of the loading cases should produce similar displacement fields for thin plates, it can
be concluded that shear deformation is overly estimated in plate elements based on the absolute
nodal coordinate formulation. This can also be seen in Table5, where total rotationϕ and shear
angleγ are shown. In this example, locking is not observed. This indicates that similar error can
be observed when using special material withν=0. According to the previous static and eigen-
frequency analysis, the results are converged to incorrectresults due to thickness locking. An
interesting feature of the pure bending test is that it does not show inaccuracy due to thickness
locking or slow convergence due to shear locking. On the other hand, according to eigenfre-
quency analysis, the second mode (saddle mode) indicates thickness locking (Tables 2 and 3).
It can be noted that when using special materialν = 0, all introduced plate elements lead to
acceptable results in studied examples where shear deformation is not a dominating factor.

6 NUMERICAL TESTS FOR THICK PLATES

In the previous tests for thin plates, the SPACAR and fully parameterized elements were
carefully considered. Based on the numerical results, it canbe concluded that SPACAR plate
elements perform well and fully parameterized plate elements perform acceptably, only for the
case of pure bending. In this section, the behavior of the fully parameterized plate elements for
thick plates will be examined. The SPACAR plate element is based on Kirchhoff theory, and
for this reason, it can not be used for the analysis of thick plates.

6.1 PURE BENDING TEST

The numerical example introduced in this section is identical to the example shown in the
previous section, with exception to theH/L relation which is increased to 0.2. The results
show that in case of pure bending with distributed moments, elements give similar results for
thin and thick plate examples. The displacement due to nodalforces at corners using thin plate
SPACAR converges to the analytical solution for thick platessubject to pure bending. For shear
deformable plate elements based on the absolute nodal coordinate formulation, linead is not
straight as can be seen in Fig. 7, where displacements due to nodal force loading of ANCF-
P48lsa at linead are shown. It is important to reiterate that the line should be straight [20].

6.2 THICK SIMPLY SUPPORTED PLATE UNDER UNIFORM STATIC LOAD

In this section, a thick plate is constrained with a simply supported condition and is loaded by
the normal uniform force in thez-direction as shown in Fig. 8. The simply supported boundary
condition is also depicted in the figure. In this example, thecomplete plate is modeled by using
the same boundary conditions as in previous sections for simply supported plates.

The deflection at the middle of the plate for a fully parameterized ANCF-plate element is
compared to the analytical result, based on the Reissner-Mindlin theory for a simply supported
plate. This solution is presented in [22] as follows

wM
0 = wK

0 +
MK

ksGH
(29)

wherewK
0 is the Kirchhoff solution andMK is the Marcus moment that is as

MK = −D∇2wK
0 =

1

π2

∞
∑

m=1

∞
∑

n=1

qmn

m2

L2 + n2

W 2

sin
mπX

L
sin

nπY

W
. (30)
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Table 6: Normalized displacement at point a (Figure 5) of thesquare thick plate modeled by SPACAR, ANCF-P48
and ANCF-P48lsa elements. A relative plate thickness ofH/L =0.2 was used.

SPACAR ANCF-P48 ANCF-P48lsa
Mesh Moment Forces Moment Forces Moment Forces

w w w w w w
2x2 1.014122 1.027241 1.000000 1.204565 1.000000 1.160000
4x4 1.003721 1.012120 1.000000 1.339463 1.000000 1.297473
8x8 1.000873 1.005163 1.000000 1.459176 1.000000 1.404434

16x16 1.000210 1.002256 1.000000 1.542509 1.000000 1.470083
32x32 1.000052 1.001033 1.000000 1.602122 1.000000 1.511021
64x64 1.000013 1.000491 1.000000 1.652936 1.000000 1.541885

ϕ ϕ ϕ ϕ ϕ ϕ
2x2 1.024127 1.050475 1.000000 1.065904 1.000000 1.000000
4x4 1.007862 1.025814 1.000000 1.109816 1.000000 1.063898
8x8 1.003778 1.013677 1.000000 1.171608 1.000000 1.133889

16x16 1.001864 1.007268 1.000000 1.215226 1.000000 1.179872
32x32 1.000929 1.003852 1.000000 1.237486 1.000000 1.205232
64x64 1.000464 1.002035 1.000000 1.247965 1.000000 1.220813

The Kirchhoff solution for the case of a simply supported plate, the deflectionwK
0 obtained

using the Navier solution is (see for example in [20]) as follows:

wK
0 =

1

π4D

∞
∑

m=1

∞
∑

n=1

qmn

m2

L2 + n2

W 2

sin
mπX

L
sin

nπY

W
(31)

where

qmn =
4

LW

∫ W

0

∫ L

0

q(X,Y ) sin
mπX

L
sin

nπY

W
dXdY (32)

=
16q

π2mn
; iff m and n odd

whereq(X,Y ) is the uniformly distributed load, which is expressed asq = −5 ·106H3 N/m3

for this example. The analytical solutions were computed using m = n = 12, which resulted
in acceptable accuracy for normalized transverse displacement within four significant digits. In
the case of a finite element solution, a uniformly distributed load is defined as a consistent load
vector as follows:

Fext =

∫ 1

−1

∫ 1

−1

∫ 1

−1

bT SJ dξdηdζ (33)

where the body force isb = [0, q/H, 0]T . Other parameters are identical to previous sections.
The normalized transverse displacements at the center of the plate are shown in tables 7-8.

In order to minimize the number of degrees of freedom, doublesymmetry for the plate under
constant loading is used in the numerical example shown in Table 9. In double symmetry, the
boundary conditions of sub domain areΩ boundaryΓ3 are as:r1 = 0, r3,x = 0 andr1,z = 0
and for boundary asΓ4: r2 = 0, r2,z = 0 andr3,y = 0. The boundariesΓ1 andΓ2 are simply
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Figure 7: Displacements at asymptotic linead, mesh64 × 64, ANCF-P48lsa,H/L = 0.2.

Figure 8: Simply supported plate, its sub domainΩ and the coordinate system.

supported, thereforer1 andr2 are fixed for boundaryΓ1 andr2 andr3 for Γ2. It can be seen in
Table 9 that the displacementsw differ from displacements of the original problem (Table 8),
where the converged displacements coincide to within threedigits.

The relationship between Reissner-Mindlin and Kirchhoff theories (Eq. (29)) is valid only
when Marcus moments are zero at the boundaries, which in practice, means the usage of ”hard”
simply supported conditions [22]. The results show that in the case of thin plates, the conver-
gence of the plate element ANCF-P48 is slow; while the convergence of element ANCF-P48lsa
is more likely independent from the factorH/L. However, both plate elements converge to
the same incorrect solution due to thickness locking. When Poisson effect is neglected, shear
deformation is overestimated in case of thick plates.
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Table 7: Normalized transverse displacementw at center of the plate with ANCF-P48 loaded by a uniform loading.

Mesh H/L=0.001 H/L=0.01 H/L=0.1 H/L=0.2
w w w w

2x2 0.0003151 0.02998 0.5333 0.6821
4x4 0.005940 0.3208 0.7210 0.8002
8x8 0.1013 0.6885 0.7742 0.8534

16x16 0.5428 0.7379 0.7938 0.8719
32x32 0.7259 0.7435 0.8011 0.8772
64x64 0.7417 0.7454 0.8032 0.8786

Table 8: Normalized transverse displacementw at center of the plate with ANCF-P48lsa loaded by a uniform
loading.

Mesh H/L=0.001 H/L=0.01 H/L=0.1 H/L=0.2
w w w w

2x2 0.8074 0.8077 0.8370 0.9107
4x4 0.7610 0.7614 0.79632 0.8768
8x8 0.7475 0.7481 0.7922 0.8731

16x16 0.7440 0.7449 0.7983 0.8768
32x32 0.7432 0.7448 0.8021 0.8784
64x64 0.7430 0.7456 0.8034 0.8789

7 RESULTS WHEN THICKNESS LOCKING IS REMOVED BY USING MODIFIED
MATERIAL

Thickness locking can be avoided through use of higher ordertheories for the displacement
field in the thickness direction or by modification of elasticcoefficients. In case of fully param-
eterized ANCF plate element, it is not easy to determine the basis functions which can lead to a
higher-than-linear displacement field in the thickness direction. However, in case of thin plates,
the assumptionσzz = 0 can be used to obtain modified in-plane elastic coefficients as follows:

D11 =
E

1 − ν2
; D12 = D21 =

νE

1 − ν2
(34)

Table 9: Normalized transverse displacementw at center of the plate with ANCF-P48lsa loaded by a uniform
loading, the symmetry of the plate is used.H/L = 0.2

Mesh ANCF-P48 ANCF-P48lsa
v v

2x2 (1x1) 0.6006 0.7353
4x4 (2x2) 0.7843 0.8625
8x8 (4x4) 0.8511 0.8711

16x16 (8x8) 0.8716 0.8766
32x32 (16x16) 0.8772 0.8784
64x64 (32x32) 0.8786 0.8789

128x128 (64x64) 0.8789 0.8790
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However, it shall be noted that this is only suitable for thinplates and it does not produce
a solution based on fully 3-D elasticity. In Table 10, the first ten eigenfrequencies of a free
square plate for the ANCF-P48 element with modified material are shown. It can be concluded
that the lowest eigenfrequencies correspond to the analytic results as well, but because of slow
convergence due to shear locking, the converged eigenfrequencies are not reached.

Table 10: First ten dimensionless eigenfreqienciesΩ = ω/ω0 of the free (ffff) square plate modeled by the ANCF-
P48 with Poisson factorν =0.3 for a number of mesh refinements. Thickness locking is neglected by using plane
stress assumption. A relative plate thickness ofH/L = 0.01 was used.

No. 1x1 2x2 4x4 8x8 16x16 32x32 64x64 Analytic
1 1.4383 1.4381 1.4234 1.3793 1.3655 1.3632 1.3618 1.3646
2 2.2739 2.2738 2.0380 1.9997 1.9882 1.9856 1.9850 1.9855
3 3.0985 3.0982 2.5636 2.4859 2.4646 2.4596 2.4584 2.4591
4 71.982 7.2347 5.5339 3.7007 3.5388 3.5230 3.5184 3.5261
5 71.982 7.2347 5.5339 3.7007 3.5388 3.5230 3.5184 3.5261
6 – 17.985 7.1124 6.3970 6.2335 6.1955 6.1862 6.1900
7 – 17.985 7.1124 6.3970 6.2335 6.1955 6.1862 6.1900
8 – 54.568 14.856 7.2267 6.5069 6.4460 6.4333 6.4528
9 – 72.207 16.632 7.7644 7.0798 7.0156 7.0017 7.0181
10 – 72.382 16.982 8.5799 7.8955 7.8216 7.8058 7.8191

Table 11: Average normalized transverse displacementsw and rotationsϕ at the loaded edge for a square can-
tilevered plate loaded by a distributed moment or a distributed transverse force at the free edge for a number of
mesh refinements andν=0.3. Plate element ANCF-P48 is used and thickness locking is neglected by using plane
stress assumption.

Mesh Moment Transverse force
1x1 1.0000 0.7501
2x2 1.0000 0.9376
4x4 1.0001 0.9846
8x8 1.0003 0.9964

16x16 1.0005 0.9996
32x32 1.0011 1.0009
64x64 1.0021 1.0020

It was excepted that the slow convergence in case of transverse force occurs when plane stress
assumption is used (Table 11). However, at this point, the convergence does not depend on the
Poisson value because Poisson effect is neglected when using modified elastic coefficients. In
case of the pure bending test, only minor differences were found when compared to the solution
of 3-D elasticity. This also supports the assumption that the pure bending test which was used
is free from thickness locking. However, the modified material is not a remedy for the slow
convergence from in-plane shear locking.
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8 DISCUSSION ABOUT DIFFERENT LOCKINGS FOR FULLY PARAMETERIZED
PLATE ELEMENTS IN STUDIED BENCHMARKED PROBLEMS

The original fully parameterized plate element ANCF-P48 with 3-D elasticity suffers from
several different lockings, which include shear, thickness and curvature lockings. In the fully
parameterized plate element ANCF-P48lsa, shear and curvature lockings are avoided with an
improved description of kinematics and by using low order interpolations for transverse shear
deformations. However, according to the results, the thickness locking is still problematic for
ANCF-P48lsa element.

Shear locking is occurs from the unbalance of the base functions [2]. This can be avoided
by using the Assumed Natural Strain (ANS) technique, which is presented for shells in [2]. In
papers [23, 15], the ANS technique is based on strains at the nodal values instead of strains at the
Gaussian quadrature points. This is used because of the factthat parasitic strains are zero at the
nodes [15]. To account for 3-D elasticity in the plate and shell formulations without thickness
locking, the transverse normal strains have to be interpolated at least linearly over the thickness
direction [24]. In contrast to other mentioned lockings, the error due to thickness locking does
not decrease with mesh refinements in the in-plane coordinates. The plate element ANCF-P48
also suffers from curvature locking due to shrinking in the thickness direction. This locking
effect is also mentioned to be problematic in other continuum plate/shell elements with coarse
meshes and initially curved elements in [15]. In ANCF-P48lsa, curvature locking is avoided by
using an improved description for kinematics.

When using the special caseν=0 in 3-D elasticity, or using a modified material stiffness
matrix, thickness locking can be avoided. Therefore, both plate elements converge to the ana-
lytic solution in most thin plate cases since coupling between bending and shear deformation
is neglected. As a conclusion, in case of thin plates, the classical modified material which was
used for 3-D plates can also be used to approximate a 3-D solution for thin plates modeled by
fully parameterized plate elements. It shall be noted that the modified material stiffness matrix
used in this study differs from the simplified material used in [11]. The same simplified mate-
rial based on the diagonal material stiffness matrixD = diag(E,E,E,G,G,G) is also used
for the continuum beam element [18], leading to similar results as obtained with beam theory.
However, in case of plates/shells, such a simplified constitutive relation will obviously lead to
an incorrect solution, which can be seen from the results in [11].

The results of benchmarked problems show that shear lockingis strongly dependent on thick-
ness whereas thickness locking is independent on thicknessbut strongly dependent on the Pois-
son effect. Due to thickness locking, the results differ by about 18 % from the analytical results,
see Tables 1. However, for in-plane modes in the eigenfrequency analyses, thickness locking
is difficult to recognize (Tables 2,3,10). The pure bending test that was used in the study is
interesting because it can be used to question the accuracy of the shear deformation because it
neither shows shear nor thickness locking (Table5). In the pure bending test, the same amount
of error for shear angles occurs for the special case ofν = 0 or when the modified material are
used. In other words, whenν = 0, both of the ANCF plate elements will pass all of the plate
tests except for the saddle test and the simply supported plate test under uniform static load.

9 CONCLUSIONS

In this study, rectangular fully parameterized plate elements based on the absolute nodal
coordinate formulation were compared in terms of numericalexamples. Elements under in-
vestigation were a fully parameterized plate element and a fully parameterized plate element
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with linearized transverse shear angles. The numerical examples demonstrate that the plate
elements suffer from different lockings, however, thickness locking is dominant. The plate el-
ement with linearization of shear angles overcomes the slowconvergence on account of shear
locking and curvature locking. Due to thickness locking, both elements based on the absolute
nodal coordinate formulation converged to the same incorrect solution in most of the numerical
examples. The results also show that in case of thin and thickplates, the shear deformation was
overestimated in both plate elements.
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