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ABSTRACT

This paper demonstrates that the predicted grasp stalislity
highly sensitive to only small changes in ttieracteof the con-
tact forces. The contribution of the geometry and stiffreegbe
contact points to the grasp stability is investigated by anglr
grasp with three contact points. Limit cases of zero and itefin
contact curvatures, and finite to infinite contact stiffressare
considered. The stability is predicted based on the apgrazc
Howard and Kumar [1], and verified with multibody dynamic
simulations. For rigid objects and fingers with only normahe
tact stiffness, the grasp stability is dominated by the acinge-
ometry, whereas the local contact stiffness and preloac flzav
minor effect. Furthermore, grasps with pointed finger tips a
more likely to be stable than grasps with flat finger tips.

INTRODUCTION

The stability of a grasped object is a commonly used prop-
erty to assess grasp performance. Predicting stabiliglévant
both at the grasper design stage to determine for instarece th
optimal shape of the fingers, and in the planning of the graspe
to put the fingers at spots on the object that will result inaa st
ble grasp. Stability is a dynamic phenomenon: it considees t
behavior after small variations about the equilibrium estatt a
grasped object. Mathematically, the tangent stiffnessimgf)
in the linearized equations of motion of a grasped objectiibo
the equilibrium state must be positive definite for stayilithis

*Address all correspondence to this author.

K matrix is derived from force and moment terms that are dif-
ferentiated with respect to the position and orientatiorthef
grasped object. These terms, representingctiaacterof the
grasp forces, must therefore be well addressed in orderderun
stand and accurately predict the grasp stability.

Forces are defined by a point of application, magnitude ant
a line of action. For grasping, the change of these threectspe
caused by small variations of the equilibrium configuratiten
pends on the contact model between grasped object and finge
This contact model can depend on several physical effdats li
the local material stiffness, the geometry at the contasttpp
the finger kinematics, and the actuation of the fingers. é&r-lit
ature, many different contact models are presented, \Ggiyén
tween normal linear elastic point contaetd.[2]) to for example
a finite nonlinear deformable contact area [3]. However\tie
lidity of the assumptions on which these models are based, i
often not demonstrated. Therefore it is unknown whetherobr n
the predicted stability resembles reality.

The objective of this paper is to demonstrate the strong de
pendency of the predicted object stability on the charauftére
contact forces by means of an example. We will consider a pla
nar grasp with three contact points, and evaluate all limées,
which are combinations of zero and infinite contact cunesur
In addition, we will vary the normal contact stiffness from fi
nite to infinite (constraints) for each of the three contamnts.

We will be using two methods. Firstly, the stability is preteid
by the frictionless contact force model presented by Hovaaud!
Kumar [1]. Secondly, these results are verified by a multjbod
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dynamics simulation. Based on this study, we will deterntiree
relative contributions to the grasp stability of the cobtg@mome-
try, the contact stiffness and the preload. Finally, thelicagions
of the results on the design of grasping devices will be dised.

The study in this paper was motivated by the observation
that the predicted stability of a grasp can invert from sabl
unstable, when the character of the contact forces is, sggmi
changed only slightly. Application of a graphical methodie
termine stability from [4] to the grasp examples from [1]; re
sulted in totally different results in the predicted stepil This
could only be attributed to the differences in the contacnge-
try and local stiffness. To clearly demonstrate these tffex the
stability, this paper uses an existing contact force modere
friction is ignored.

MATERIAL AND METHODS
Grasp example

To investigate the sensitivity of the grasp stability on the
contact geometry and stiffness, a planar grasp examplahvitb
contact points is used. This example was introduced by Hbwar
and Kumar, and consists of three rigid fingers grasping a rigi
polygon with dimensions corresponding to Fig. 1. According
to their assumptions, the fingers are rigidly fixed in the glob
reference fram@®, representing position controlled fingers. To
each " finger a local coordinate frame;(%;) is fixed. Further-
more, friction at the contact points is neglected, and theatb
can freely move by what is called 'rigid body penetrationheT
latter assumption sounds confusing, but means that fol sinal
ject movements the fingers or object can indent without cimang
the initial contact geometry. The stability of the objecteis
pressed by the distancédetween finger 3 and frant@ at which
the third contact force must apply in order to stably grasp th
object.

Contact Force Model for Curved Surfaces

The derivation of th&k matrix based on the contact force
model of Howard and Kumar is briefly recapitulated. It is as-
sumed that only normal contact forces apply, and that thal loc
contact geometry of the fingers and object are sections désir
with known radii. In Fig. 2 such a contact point is shown, with
the local orthogonal coordinate frar(@;) fixed to the finger. In
addition, three surface parameters are usgdindug along the
finger and object, respectively, and the rigid body penietnat/
perpendicular to the contact surface. The local frame isstra
lated by €, dy;) and rotated by®; with respect to the global
frame(O). Ka andKg are the curvatures (inverse of radii) of the
finger and object, respectively.
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Figure 1. Grasp of a polygon by rigid fingers with zero (Finger 1 and 2)

and infinite (Finger 3) curvature, adapted from [1]. Dimensions in [mm],
[rad].
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Figure 2. Local surface frame and orthogonal frame at a contact point,
adapted from [1].

contact force will change according to:
Fn = Fro + knAw @)

whereF is the initial contact force ank, the normal contact

For small displacements of the object, the magnitude of the stiffness. The linearized variation of the contact forced mo-

2
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ment atO;, expressed in the surface parameters is:

AR, = —Fysin(—KaAua) =~ FroKaAup
AR, = Fycoq—KaAua) — Fro ~ kaAw @)
sin(—KaA
AMg, = 7an ~ FrolAUua
A

The transformation from the surface parametgysug andw to
the local frame is obtained by assuming superposition oé pur
slipping, rolling and indentation of the object at the finger-
face. The first two types of these motions are visualized @n Fi
3. On the left part, the object purely slips a horizontal atise
Ax;. On the right side of this figure, the object purely rolls by an
angleAB;. Based on geometry, the following relations hold:

AxiKp AB;
Aup = —
K& +Kg  Ka+Ksg
Aug = 2 Ka AB; 3
Ka+Ksg Ka+Kp
Aw = —Ay;

Substituting Eqn. (3) in Eqn. (2) and rearranging termsdead
the following relation:

AR, DX
AFyi =—Kj Ayl (4)
AMo, 26,

whereK; is the local tangent stiffness matrix, consistent with
Eqgn. (20) in [1]:

—FnoKaKg FnoKa
Ka+Ksg Ka+Kg
Ki = 0 k& O (5)
—FnoKs Fno
Ka+Kg Ka+Kg

To obtain the overall tangent contact stiffness matrix ex-
pressed in the global frame, the lo¢&l matrix of each contact
pointi is transformed and added:

n
Kot = ;T?Km (6)

where™ means transpose aiid is the transformation matrix:

cog®;) —sin(®;) dy,
Ti= | sin(®;) cog®d;) —dy @)
0 0 1
3

Finger

. Object |-+

Figure 3. Relative motion of the object by slip (left) and roll (right).

with dy, dy, and®; according Fig. 2, and is the number of the
contact point. For stabilityo; must be positive definite, which
in this case is satisfied when the determinark @f is positive.

Contact Geometry and Stability. For the planar grasp
example (see Fig. 1), the stability is evaluated for all fiogises
of zero and infinite contact curvatures. A finger with zero-cur
vature is calledlat, for which contact poinKy = 0, Kg — oo.
Fingers with infinite curvature are callgmintedand for such
contactKp — o, Kg = 0.

Since there are three fingers which are either pointed or fla
23 different combinations exist as shown in Fig. 4. For each-com
bination, the distance for which the object is stably grasped is
calculated. Taking cad#p as example to calculate for which
this grasp is stabléa, ,Ka,,Ks, = 0 andKg,,Kg,,Ka, —  are
substituted into Eqgn. (6), which results in:

3(knitkn2)  vV3(kni—kn2) _F
7 2 n
Ktot_’ffp = \/é(kn.zll*kn,z) kn,1+knf+4kn,3 0 (8)
R 0  Fa(r—60)

The determinant of this matrix (which must be positive fota s
ble grasp) is as follows:

det[Kiotfip | = Fn (3r — 180) knikna+Kn1kns +knokns _
F2 (k1 + Kn2 +4kn3)
4

(9)
For stability, the magnitude of distancdor which Eqn. (9) is
positive is derived.

Contact Stiffness and Stability. Howard and Kumar
initially assumed infinitely stiff contact for each fingds (— ).
However, this assumption results in grasps without any ekegr
of freedom from a kinematic viewpoint. To investigate thieef
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Figure 4. Limit cases of zero and infinite contact curvatures. Letter p
denotes pointedfinger, f denotes flat finger tip, and the it" letter belongs
to the it finger.

of the contact stiffness on the stability, the local stiffeenatrix
(Egn. (5)) is evaluated for all eight combinations of poihsd
flat finger tips, both with infinite and finite normal contadffst
nessk,; in each i1 contact point. For this symmetric example to
be in equilibrium, the preloaB,g at each finger must be equal.
Based on the obtained stability conditions as functiorig, péind
Fno, the contribution of the contact stiffness to the stabilityl

be discussed.

Multibody Dynamics Simulation
To verify the predicted stability in the various cases ac-
cording to Howard and Kumar, a flexible multibody dynamics

kn.,3 %

=i
=

I(n‘3

Yo Yo

Figure 5. Grasp with finite stiffness at contact 3 in the object (left) and in
the finger (right), respectively.

variations of the object or not. Secondly, for the case wlith t
flat-flat-pointed finger shape (see Fig. 1) also two and three fi
gers with finite stiffness were simulated, which resultegrissps
with two and three degrees of freedom, respectively. Fahafie
simulated cases, distancéor which the grasp is stable was cal-
culated and compared with the results obtained with theacbnt
force model of Howard and Kumar.

RESULTS
For all limit cases where the fingers are either pointed or flat
the range of distanaefor which the grasp is stable according the

model was made. The modeling was done in the program systemcontact force model of Howard and Kumar is summarized in Tab

SPACAR which was developed by Van der Werff [5], Jonker [6],

and Schwab and Meijaard [7]. SPACAR is based on finite ele-

ment principles and can handle systems of rigid and flexibte b
ies connected by various joints in both open and closed katiem
loops. SPACAR numerically generates and solves full noear
dynamics equations using minimal coordinates (constaing
eliminated). SPACAR can also find the numeric coefficients fo
the linearized equations of motion based on an analytiatine-
tion of the non-linear equations. This option was used foerde
mining the total stiffness matrik; and the corresponding sta-
bility.

The initial assumption of rigidly fixed fingers and infinitely
stiff fingers kinematically results in a grasp without anyidee
of freedom. Therefore at least one contact point must haite fin
stiffness in order to allow for small variations about thaiieq
librium state and to predict stability in the multibody dynias
model. First, one linear elastic spring element (arbiyatosen
kn =30 Nmn1 1, Fo = 3 N) is applied in subsequently the finger
and the object at contact 3 and 1, while the stiffness of therot
contact points is kept infinite (by constraints). The maughf a
spring element at contact 3 in the object and finger, respgti
is illustrated in Fig. 5. The principal difference betwehg first
and the latter is whether the spring element rotates durimals

4

1. The second column shows whether a finger is pointed (p) ©
flat (f). The third column contains the resultimgat infinitely
stiff contact points. The last column showith a finite normal
contact stiffnesk, ; in each i" contact point.

For dynamic simulations in SPACAR, the stability of grasps
with infinite stiffness at all contact points can not be detieed.
When one, two or three finite stiffness elements are applied, t
stability results of the simulations agree to those obthinéh
the contact force model of Howard and Kumar (see Tab. 1, col
umn 4). For case 4, these numerical results are summarized
Tab. 2. For the stability of the grasp it does not matter wiieth
the finite stiffness is present in the finger or in the object.

DISCUSSION

The most important observation is the large differencedn st
bility between grasping with pointed and flat finger tips. [€&ab
shows that the stability even inverts when pointed finges lig-
come flat or vice versa. Distancdor which the grasp is stable
ranges betweef-,»), depending on the chosen finger geom-
etry.

The large difference between pointed and flat finger tips i
caused by the different character of the contact forcess iBhi
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Table 1.

derived with the method of Howard and Kumar.

Predicted stability as function of I for differently shaped fingers,

Finger r [mm]

(1,2,3) || knj — o | knj finite
1 ppp >-60 > -60
2 fff <-60 < -60
3| ppf | <60 | <60-P(pupathe )
4| fo | >80 | > 60+ (et )
5| pfp ||[> 0 > 0+ %(kmk:;ﬂ:lﬁﬁ 3++knk:2kn.3)
6| ff | < 0 | < 0-fp(paieztes
7 pff <0 < 0- % ( kn_lk:znjrlk:lf&i;rknk’:zkn.s)
8| fpp || > O > 0+ %(kn_lk: I;nfk:i?{:_ 3++knk:2kn.3)

(* Case 4 is equal to the initial grasp of Fig. 1)
Table 2. Predicted stability of Case 4 as a function of I' for varying stiff-

ness in the fingers, derived with the multibody dynamics simulation. (Stiff-

ness in [Nmmfl]).

Finger 1 | Finger2 | Finger 3 || r [mm]
(flat) (flat) (pointed)
a| knp—o | kng—o | knz—oo || N/A
b| kni—o | kng— o | kng=30| >60
C| kn1=30| knp— o | knz— o0 || >60
d| kn1=30| knzg— | kn3=30| >60+¢
€| kn1=30| kn2=30 | kn3=30 | >60+4¢

(e= 1 ~00167)

illustrated in Fig. 6, where an object is grasped between two
fingers. The grasp between pointed fingers is stable for small
tations, because the contact forces remain perpendiaulduet
object surface and generate a counteracting moment. @gntra
the grasp with flat finger tips is unstable.

A second remarkable observation is the major contributfon o
the contact geometry on the stability, relative to the l@caitact
stiffness and preload. For case 4 with equal finite contaft st
nesses at all contact points, the grasp is stable whef0+ 4e.

The first term depends on geometry only, wlileomprises the
local deformation with the order of magnitude= O (Fno/kn).
Thise is generally small compared to the characteristic length of

5
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Figure 6. Grasping with pointed fingers (left) is stable, whereas with flat
finger tips (right) is unstable.

the grasped object, except when the stiffness is very sroait ¢
pared to the preload. For case 1 and 2 with only pointed or fla
fingers, respectively, the stability even does not depenideal
deformations at all. The same is true for all cases when onl
one contact point has finite stiffness. Thus, the stabilitthese
grasps is dominated by the contact geometry.

Finally, the obtained stability results might (again) com-
pletely change, when slightly different assumptions aredus
Cutkosky and Wright [8] assume also tangential and rotationa
stiffness of the fingers, which also influences the charaaftter
the contact forces. Then, the opposite result is found:pings
with flat finger tips is more likely to be stable than graspirithw
pointed fingers. This underlines the message of this paper th
the predicted object stability is indeed strongly dependarthe
character of the contact forces, and the resemblance ofsé: u
models with the real grasp situation must thoroughly bestive
gated.

CONCLUSIONS

In this paper, the grasp stability was predicted for all timi
cases of zero and infinite contact curvatures of a planapgras
with three fingers. In addition, the normal contact stifness
varied from finite to infinite. The stability was predictedsied
on the contact force model of Howard and Kumar [1], and veri-
fied by a multibody dynamics simulation.

It was demonstrated that the predicted object stability is
strongly dependent on the character of the contact forcenwWh
rigid objects and fingers with only normal contact stiffnase
assumed, then grasps with pointed fingers are more likelgto b
stable than grasps with flat finger tips. Furthermore, we sldow
that the grasp stability is dominated by the contact gegmetr
while local contact stiffness and preload only have a mirer e
fect. Thus, from a designers viewpoint, pointed fingers aee p
ferred, and local deformations need not be considered &igde
optimization based on the predicted grasp stability.
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