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ABSTRACT
This paper demonstrates that the predicted grasp stabilitis

highly sensitive to only small changes in thecharacterof the con-
tact forces. The contribution of the geometry and stiffnessat the
contact points to the grasp stability is investigated by a planar
grasp with three contact points. Limit cases of zero and infinite
contact curvatures, and finite to infinite contact stiffnesses are
considered. The stability is predicted based on the approach of
Howard and Kumar [1], and verified with multibody dynam
simulations. For rigid objects and fingers with only normal con-
tact stiffness, the grasp stability is dominated by the contact ge-
ometry, whereas the local contact stiffness and preload have a
minor effect. Furthermore, grasps with pointed finger tips are
more likely to be stable than grasps with flat finger tips.

INTRODUCTION
The stability of a grasped object is a commonly used pr

erty to assess grasp performance. Predicting stability is relevant
both at the grasper design stage to determine for instancee
optimal shape of the fingers, and in the planning of the grasr
to put the fingers at spots on the object that will result in a sa-
ble grasp. Stability is a dynamic phenomenon: it considershe
behavior after small variations about the equilibrium state of a
grasped object. Mathematically, the tangent stiffness matrix (K)
in the linearized equations of motion of a grasped object abut
the equilibrium state must be positive definite for stability. This
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K matrix is derived from force and moment terms that are d
ferentiated with respect to the position and orientation ofthe
grasped object. These terms, representing thecharacterof the
grasp forces, must therefore be well addressed in order to under-
stand and accurately predict the grasp stability.

Forces are defined by a point of application, magnitude a
a line of action. For grasping, the change of these three aspcts
caused by small variations of the equilibrium configurationde-
pends on the contact model between grasped object and fing.
This contact model can depend on several physical effects lke
the local material stiffness, the geometry at the contact points,
the finger kinematics, and the actuation of the fingers. In liter-
ature, many different contact models are presented, varying be-
tween normal linear elastic point contact (e.g.[2]) to for example
a finite nonlinear deformable contact area [3]. However, theva-
lidity of the assumptions on which these models are based
often not demonstrated. Therefore it is unknown whether or not
the predicted stability resembles reality.

The objective of this paper is to demonstrate the strong d
pendency of the predicted object stability on the characterof the
contact forces by means of an example. We will consider a p
nar grasp with three contact points, and evaluate all limit cases,
which are combinations of zero and infinite contact curvatures.
In addition, we will vary the normal contact stiffness from fi-
nite to infinite (constraints) for each of the three contact points.
We will be using two methods. Firstly, the stability is predicted
by the frictionless contact force model presented by Howardand
Kumar [1]. Secondly, these results are verified by a multiboy
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dynamics simulation. Based on this study, we will determinethe
relative contributions to the grasp stability of the contact geome-
try, the contact stiffness and the preload. Finally, the implications
of the results on the design of grasping devices will be discussed.

The study in this paper was motivated by the observati
that the predicted stability of a grasp can invert from stable to
unstable, when the character of the contact forces is, seemingly,
changed only slightly. Application of a graphical method tode-
termine stability from [4] to the grasp examples from [1], re-
sulted in totally different results in the predicted stability. This
could only be attributed to the differences in the contact geome-
try and local stiffness. To clearly demonstrate these effects on the
stability, this paper uses an existing contact force model where
friction is ignored.

MATERIAL AND METHODS

Grasp example

To investigate the sensitivity of the grasp stability on th
contact geometry and stiffness, a planar grasp example withthree
contact points is used. This example was introduced by Howad
and Kumar, and consists of three rigid fingers grasping a rigd
polygon with dimensions corresponding to Fig. 1. Accordin
to their assumptions, the fingers are rigidly fixed in the global
reference frameO, representing position controlled fingers. To
each ith finger a local coordinate frame (xi , yi) is fixed. Further-
more, friction at the contact points is neglected, and the object
can freely move by what is called ’rigid body penetration’. The
latter assumption sounds confusing, but means that for small ob-
ject movements the fingers or object can indent without changing
the initial contact geometry. The stability of the object isex-
pressed by the distancer between finger 3 and frameO at which
the third contact force must apply in order to stably grasp te
object.

Contact Force Model for Curved Surfaces

The derivation of theK matrix based on the contact force
model of Howard and Kumar is briefly recapitulated. It is as
sumed that only normal contact forces apply, and that the loal
contact geometry of the fingers and object are sections of circles
with known radii. In Fig. 2 such a contact point is shown, wit
the local orthogonal coordinate frame(Oi) fixed to the finger. In
addition, three surface parameters are used:uA anduB along the
finger and object, respectively, and the rigid body penetration w
perpendicular to the contact surface. The local frame is trans-
lated by (dxi , dyi ) and rotated byΦi with respect to the global
frame(O). KA andKB are the curvatures (inverse of radii) of the
finger and object, respectively.

For small displacements of the object, the magnitude of t
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Figure 1. Grasp of a polygon by rigid fingers with zero (Finger 1 and 2)

and infinite (Finger 3) curvature, adapted from [1]. Dimensions in [mm],

[rad].
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Figure 2. Local surface frame and orthogonal frame at a contact point,

adapted from [1].

contact force will change according to:

Fn = Fn0 +kn∆w (1)

whereFn0 is the initial contact force andkn the normal contact
stiffness. The linearized variation of the contact forces and mo-
Copyright c© 2008 by ASME
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ment atOi , expressed in the surface parameters is:

∆Fxi = −Fnsin(−KA∆uA) ≈ Fn0KA∆uA

∆Fyi = Fncos(−KA∆uA)−Fn0 ≈ kn∆w

∆MOi = −Fn
sin(−KA∆uA)

KA
≈ Fn0∆uA

(2)

The transformation from the surface parametersuA, uB andw to
the local frame is obtained by assuming superposition of pue
slipping, rolling and indentation of the object at the fingersur-
face. The first two types of these motions are visualized in Fg.
3. On the left part, the object purely slips a horizontal distance
∆xi . On the right side of this figure, the object purely rolls by a
angle∆θi . Based on geometry, the following relations hold:

∆uA =
∆xiKB

KA +KB
− ∆θi

KA +KB

∆uB =
∆xiKA

KA +KB
+

∆θi

KA +KB
∆w = −∆yi

(3)

Substituting Eqn. (3) in Eqn. (2) and rearranging terms leads to
the following relation:





∆Fxi

∆Fyi

∆MOi



 = −Ki





∆xi

∆yi

∆θi



 (4)

whereKi is the local tangent stiffness matrix, consistent wit
Eqn. (20) in [1]:

Ki =











−Fn0KAKB

KA +KB
0

Fn0KA

KA +KB
0 kn 0

−Fn0KB

KA +KB
0

Fn0

KA +KB











(5)

To obtain the overall tangent contact stiffness matrix e
pressed in the global frame, the localKi matrix of each contact
point i is transformed and added:

Ktot =
n

∑
i=1

TT
i KiTi (6)

whereT means transpose andTi is the transformation matrix:

Ti =





cos(Φi) −sin(Φi) dyi

sin(Φi) cos(Φi) −dxi

0 0 1



 (7)
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Figure 3. Relative motion of the object by slip (left) and roll (right).

with dxi , dyi andΦi according Fig. 2, andn is the number of the
contact point. For stability,Ktot must be positive definite, which
in this case is satisfied when the determinant ofKtot is positive.

Contact Geometry and Stability. For the planar grasp
example (see Fig. 1), the stability is evaluated for all limit cases
of zero and infinite contact curvatures. A finger with zero cur-
vature is calledflat, for which contact pointKA = 0, KB → ∞.
Fingers with infinite curvature are calledpointedand for such
contactsKA → ∞, KB = 0.

Since there are three fingers which are either pointed or fla
23 different combinations exist as shown in Fig. 4. For each com-
bination, the distancer for which the object is stably grasped is
calculated. Taking caseffp as example to calculate for whichr
this grasp is stable,KA1,KA2,KB3 = 0 andKB1,KB2,KA3 → ∞ are
substituted into Eqn. (6), which results in:

Ktot,ffp =







3(kn,1+kn,2)
4

√
3(kn,1−kn,2)

4 −Fn√
3(kn,1−kn,2)

4
kn,1+kn,2+4kn,3

4 0
−Fn 0 Fn(r −60)






(8)

The determinant of this matrix (which must be positive for a sta-
ble grasp) is as follows:

det
[

Ktot,ffp
]

= Fn (3r −180)
kn,1kn,2 +kn,1kn,3 +kn,2kn,3

4
−

F2
n (kn,1 +kn,2 +4kn,3)

4
(9)

For stability, the magnitude of distancer for which Eqn. (9) is
positive is derived.

Contact Stiffness and Stability. Howard and Kumar
initially assumed infinitely stiff contact for each finger (kn → ∞).
However, this assumption results in grasps without any degree
of freedom from a kinematic viewpoint. To investigate the effect
Copyright c© 2008 by ASME
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Figure 4. Limit cases of zero and infinite contact curvatures. Letter p

denotes pointedfinger, f denotes flat finger tip, and the ith letter belongs

to the ith finger.

of the contact stiffness on the stability, the local stiffness matrix
(Eqn. (5)) is evaluated for all eight combinations of pointed and
flat finger tips, both with infinite and finite normal contact stiff-
nesskn,i in each ith contact point. For this symmetric example t
be in equilibrium, the preloadFn0 at each finger must be equal
Based on the obtained stability conditions as functions ofkn,i and
Fn0, the contribution of the contact stiffness to the stabilitywill
be discussed.

Multibody Dynamics Simulation
To verify the predicted stability in the various cases a

cording to Howard and Kumar, a flexible multibody dynamic
model was made. The modeling was done in the program sys
SPACAR which was developed by Van der Werff [5], Jonker [6
and Schwab and Meijaard [7]. SPACAR is based on finite e
ment principles and can handle systems of rigid and flexible bod-
ies connected by various joints in both open and closed kinematic
loops. SPACAR numerically generates and solves full non-linear
dynamics equations using minimal coordinates (constraints are
eliminated). SPACAR can also find the numeric coefficients fr
the linearized equations of motion based on an analytic lineariza-
tion of the non-linear equations. This option was used for deter-
mining the total stiffness matrixKtot and the corresponding sta
bility.

The initial assumption of rigidly fixed fingers and infinitely
stiff fingers kinematically results in a grasp without any degree
of freedom. Therefore at least one contact point must have finite
stiffness in order to allow for small variations about the equi-
librium state and to predict stability in the multibody dynamics
model. First, one linear elastic spring element (arbitrarily chosen
kn = 30 Nmm−1,Fn0 = 3 N) is applied in subsequently the finge
and the object at contact 3 and 1, while the stiffness of the other
contact points is kept infinite (by constraints). The modeling of a
spring element at contact 3 in the object and finger, respectively,
is illustrated in Fig. 5. The principal difference between the first
and the latter is whether the spring element rotates during small
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Figure 5. Grasp with finite stiffness at contact 3 in the object (left) and in

the finger (right), respectively.

variations of the object or not. Secondly, for the case with the
flat-flat-pointed finger shape (see Fig. 1) also two and three fin-
gers with finite stiffness were simulated, which resulted ingrasps
with two and three degrees of freedom, respectively. For allthese
simulated cases, distancer for which the grasp is stable was cal-
culated and compared with the results obtained with the contact
force model of Howard and Kumar.

RESULTS
For all limit cases where the fingers are either pointed or fla,

the range of distancer for which the grasp is stable according the
contact force model of Howard and Kumar is summarized in Ta
1. The second column shows whether a finger is pointed (p)
flat (f). The third column contains the resultingr at infinitely
stiff contact points. The last column showsr with a finite normal
contact stiffnesskn,i in each ith contact point.

For dynamic simulations in SPACAR, the stability of grasp
with infinite stiffness at all contact points can not be determined.
When one, two or three finite stiffness elements are applied, the
stability results of the simulations agree to those obtained with
the contact force model of Howard and Kumar (see Tab. 1, co
umn 4). For case 4, these numerical results are summarized
Tab. 2. For the stability of the grasp it does not matter whether
the finite stiffness is present in the finger or in the object.

DISCUSSION
The most important observation is the large difference in sta-

bility between grasping with pointed and flat finger tips. Table 1
shows that the stability even inverts when pointed finger tips be-
come flat or vice versa. Distancer for which the grasp is stable
ranges between(−∞,∞), depending on the chosen finger geom
etry.

The large difference between pointed and flat finger tips
caused by the different character of the contact forces. This is
Copyright c© 2008 by ASME
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Table 1. Predicted stability as function of r for differently shaped fingers,

derived with the method of Howard and Kumar.

Finger r [mm]

(1,2,3) kn,i → ∞ kn,i finite

1 ppp >-60 > -60

2 fff <-60 < -60

3 ppf < 60 < 60− Fn0
3 (

kn,1+kn,2+4kn,3
kn,1kn,2+kn,1kn,3+kn,2kn,3

)

4∗ ffp > 60 > 60+ Fn0
3 (

kn,1+kn,2+4kn,3
kn,1kn,2+kn,1kn,3+kn,2kn,3

)

5 pfp > 0 > 0+ Fn0
3 (

kn,1+4kn,2+kn,3
kn,1kn,2+kn,1kn,3+kn,2kn,3

)

6 fpf < 0 < 0− Fn0
3 (

kn,1+4kn,2+kn,3
kn,1kn,2+kn,1kn,3+kn,2kn,3

)

7 pff < 0 < 0− Fn0
3 (

4kn,1+kn,2+kn,3
kn,1kn,2+kn,1kn,3+kn,2kn,3

)

8 fpp > 0 > 0+ Fn0
3 (

4kn,1+kn,2+kn,3
kn,1kn,2+kn,1kn,3+kn,2kn,3

)

(∗ Case 4 is equal to the initial grasp of Fig. 1)

Table 2. Predicted stability of Case 4 as a function of r for varying stiff-

ness in the fingers, derived with the multibody dynamics simulation. (Stiff-

ness in [Nmm−1]).

Finger 1 Finger 2 Finger 3 r [mm]

(flat) (flat) (pointed)

a kn,1 → ∞ kn,2 → ∞ kn,3 → ∞ N/A

b kn,1 → ∞ kn,2 → ∞ kn,3 = 30 > 60

c kn,1 = 30 kn,2 → ∞ kn,3 → ∞ > 60

d kn,1 = 30 kn,2 → ∞ kn,3 = 30 > 60+ ε

e kn,1 = 30 kn,2 = 30 kn,3 = 30 > 60+4ε
(

ε = 1
6

Fn
kn

≈ 0.0167
)

illustrated in Fig. 6, where an object is grasped between t
fingers. The grasp between pointed fingers is stable for smallro-
tations, because the contact forces remain perpendicular to the
object surface and generate a counteracting moment. Contrry,
the grasp with flat finger tips is unstable.

A second remarkable observation is the major contributionf
the contact geometry on the stability, relative to the localcontact
stiffness and preload. For case 4 with equal finite contact stiff-
nesses at all contact points, the grasp is stable whenr > 60+4ε.
The first term depends on geometry only, whileε comprises the
local deformation with the order of magnitudeε = O(Fn0/kn).
Thisε is generally small compared to the characteristic length
5
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Figure 6. Grasping with pointed fingers (left) is stable, whereas with flat

finger tips (right) is unstable.

the grasped object, except when the stiffness is very small com-
pared to the preload. For case 1 and 2 with only pointed or fl
fingers, respectively, the stability even does not depend onlocal
deformations at all. The same is true for all cases when on
one contact point has finite stiffness. Thus, the stability of these
grasps is dominated by the contact geometry.

Finally, the obtained stability results might (again) com
pletely change, when slightly different assumptions are used.
Cutkosky and Wright [8] assume also tangential and rotationl
stiffness of the fingers, which also influences the characterof
the contact forces. Then, the opposite result is found: grasping
with flat finger tips is more likely to be stable than grasping with
pointed fingers. This underlines the message of this paper tat
the predicted object stability is indeed strongly dependent on the
character of the contact forces, and the resemblance of the used
models with the real grasp situation must thoroughly be investi-
gated.

CONCLUSIONS
In this paper, the grasp stability was predicted for all limt

cases of zero and infinite contact curvatures of a planar graps
with three fingers. In addition, the normal contact stiffness was
varied from finite to infinite. The stability was predicted based
on the contact force model of Howard and Kumar [1], and ve
fied by a multibody dynamics simulation.

It was demonstrated that the predicted object stability
strongly dependent on the character of the contact forces. Wen
rigid objects and fingers with only normal contact stiffnessare
assumed, then grasps with pointed fingers are more likely toe
stable than grasps with flat finger tips. Furthermore, we showed
that the grasp stability is dominated by the contact geomety,
while local contact stiffness and preload only have a minor ef-
fect. Thus, from a designers viewpoint, pointed fingers are pre-
ferred, and local deformations need not be considered for design
optimization based on the predicted grasp stability.
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