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Abstract In this paper, an experimental validation of some modelling aspects of an uncon-
trolled bicycle is presented. In numerical models, many physical aspects of the real bicy-
cle are considered negligible, such as the flexibility of the frame and wheels, play in the
bearings, and precise tire characteristics. The admissibility of these assumptions has been
checked by comparing experimental results with numerical simulation results.

The numerical simulations were performed on a three-degree-of-freedom benchmarked
bicycle model. For the validation we considered the linearized equations of motion for small
perturbations of the upright steady forward motion. The most dubious assumption that was
validated in this model was the replacement of the tires by knife-edge wheels rolling without
slipping (non-holonomic constraints).

The experimental system consisted of an instrumented bicycle without rider. Sensors
were present for measuring the roll rate, yaw rate, steering angle, and rear wheel rotation.
Measurements were recorded for the case in which the bicycle coasted freely on a level
surface. From these measured data, eigenvalues were extracted by means of curve fitting.
These eigenvalues were then compared with the results from the linearized equations of
motion of the model. As a result, the model appeared to be fairly accurate for the low-speed
low-frequency behaviour.
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1 Introduction

The governing dynamic equations for a general bicycle model have recently been bench-
marked [17] and after more than a century of bicycle dynamics literature we are confident
about the correctness. In this model, many physical aspects of the real bicycle are consid-
ered negligible, such as the flexibility of the frame and wheels, play in the bearings, and
precise tire characteristics. The admissibility of these assumptions is checked by comparing
experimental results with numerical simulation results. Apart from flexibility and play, the
most dubious assumption to be validated in this model is the replacement of the tires by
knife-edge wheels rolling without slipping (non-holonomic constraints).

The bicycle model, shown in Fig. 1, consists of four rigid bodies connected by revolute
joints. The contact between the knife-edge wheels and the flat level surface is modelled
by holonomic constraints in the normal direction and by non-holonomic constraints in the
longitudinal and lateral directions. In the absence of a rider (or with a rider rigidly attached
to the rear frame) we assume no-hands operation. The resulting non-holonomic mechanical
model has three velocity degrees of freedom: forward speed v, lean rate ¢ and steering rate §.
For the validation we consider the linearized equations of motion for small perturbations of
the upright steady forward motion (see Appendix). Note that this uncontrolled model can
show, after a lateral perturbation, asymptotically stable motion in a certain speed range,
despite the fact that the model is energy conservative.

The experimental system [8] consists of an instrumented bicycle without rider, see Fig. 2.
Sensors are present for measuring the roll rate, yaw rate, steering angle, and rear wheel
rotation. Trainer wheels prevent the complete fall of the bicycle for unstable conditions.
Measurements are recorded for the case in which the bicycle, after being manually pushed
off, coasts freely on a level surface. From these measured data, eigenvalues are extracted
by means of curve fitting. These eigenvalues are then compared with the results from the
linearized equations of motion of the model. The literature on experimental verification of
modelling aspects in single-track vehicles can be divided into two main sections: bicycles
and motorcycles. It is known from experience that tires play a dominant role in the dynamic
behaviour of a motorcycle at moderate to high speed. Since the model under study here
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Fig.2 Instrumented bicycle with all the measurement equipment installed. Sensors are present for measuring
the roll rate, yaw rate, steering angle, and rear wheel rotation. Data are collected via a USB-connected data
acquisition unit on the laptop computer, mounted on the rear rack

operates at low speed and assumes ideal rolling contact, it seems that many motorcycle
studies lie outside the current scope.

Dohring [4, 5] was the first to measure the lateral motion of a single-track vehicle. Al-
though he measured on three motorcycles, he compared his results with the same numerical
model as presented here. Rice and Roland [11] measured the lateral stability and control
of two distinct bicycles, both in hands-free as well as controlled operation. Roland and
Lynch [14] performed an extensive study in lateral bicycle dynamics. They measured tire
characteristics and then performed a number of tests on an instrumented uncontrolled bi-
cycle and compared the results with their model (Roland and Massing [15], Roland [13]).
Wichter [20] and Suhr [18] performed some experimental validation for their bicycle dy-
namics model. Jackson and Dragovan [7] measured the state of a bicycle ridden hands-free
and compared the time history with results from their model.

Many measurements have been made on the lateral dynamics of motorcycles. We discuss
here only some distinct contributions. Eaton [6] measured the transient response of a light
motorcycle to a lateral disturbance and compared this with his model. Rice [12] performed
a number of tests on motorcycles in order to obtain performance characteristics for handling
and safety. Weir and Zellner [21] tested transient behaviour of motorcycles in some standard
manoeuvres and compared some results with their model. Ruijs and Pacejka [16] built a
rider robot to validate their computer model eliminating disturbances originating from the
human rider. Rider robots have also been built by the group of Kageyama [10] and the Blue
Team [2], a group of Berkeley students engaged in the DARPA challenge. The group led
by Cossalter [1, 3] over the past decade performed an extensive range of measurements on
several aspects of the dynamic behaviour of motorcycles.

@ Springer



118 J.D.G. Kooijman et al.

The organization of the paper is as follows. After this introduction, the instrumented
bicycle and subsequently the measurement of the bicycle design parameters are described.
Then the test procedure and the comparison of the experimental and numerical results are
presented and discussed. The paper ends with some conclusions.

2 Instrumented bicycle

The experimental system consists of an instrumented bicycle without rider. Sensors are
present for measuring the roll rate, the yaw rate, the steering angle and the rear wheel rota-
tion. The data are collected on a laptop computer mounted on the rear rack. Trainer wheels
prevent the complete fall of the bicycle for unstable conditions. Measurements are recorded
for the case in which the bicycle coasts freely on a level surface.

2.1 The bicycle

The instrumented bicycle used in the tests was a standard 21" city-bicycle with 28” wheels,
brand ‘Maxwell’, type ‘Silvercity’, see Fig. 2. For the experiments all the superfluous parts
on the bicycle were removed. What remained was the rear frame with bottom bracket and
the rear rack, the front fork and the handlebar, front wheel and the rear wheel with sprocket-
wheel cassette.

Sidewheels were added to the bicycle to reduce the maximum lean angle by which the
bicycle could tip over to about 30°. The sidewheels were connected via a suspension con-
struction consisting of two metal strips acting as leaf springs and two telescopic dampers,
which had the air removed, to act as a guide. The front fork was flipped (rotated by 180°) to
increase the trail. This lowers the weave speed and by such increases the stable speed range.
In this way we were able to make better use of the limited space available and maximal
attainable launch speed (running along the bicycle) for the tests. The head tube bearings and
the wheel hub bearings were cleaned and reinstalled to reduce play and excessive friction.
New standard road tires, 28 x 1 3/8 (Halfords brand), and new inner tubes were mounted.
The tires were inflated to 3.5 bar. The rims were checked for trueness. No radial or lateral
misalignment was noted.

2.2 Measuring equipment

The measurement equipment was chosen such that there would be no effect on the dynamic
behaviour of the system other than added weight or inertia (no extra degrees of freedom by
non-rigidly attached parts). Furthermore, it should be portable from one bicycle to another
and had to withstand moderate shocks. Within a limited budget (M.Sc. project) the following
equipment was chosen:

Angular rate sensors: Two angular rate gyros, brand Silicon Sensing CRS03 with a rate
range of £100 degs/s were used to measure the lean rate and yaw rate of the rear frame.
The two rate sensors were placed perpendicular to each other on a T profile that was
clamped to the saddle post, as in Fig. 3a. A rotational spirit level was placed on top of
the yaw rate sensor to ensure that it was placed horizontally.

Steering angle sensor: A potentiometer (Duncan Electronics Inc. 1801 Single turn, 358
degree) was used with the following specifications: Resistance: 20 k€2 4+ 3% and Linear-
ity: £0.75%. Most “standard” Dutch bicycles have a head tube with an outer diameter of
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Fig. 3 Close-ups of the mounted instruments of the instrumented bicycle from Fig. 2: a two angular rate
sensors, spirit level, speedometer display, battery pack and USB data acquisition unit, b steering angle poten-
tiometer, ¢ forward speed sensor which consists of a 10 magnet ring (black) and pick-up

34 mm. Therefore, a bracket with two vertically mounted steel L shaped rods connected
to an aluminium U-profile kept the potentiometer in position, as in Fig. 3b. The rods also
restricted the maximum angle that the front frame could make with respect to the rear to
about 30°, reducing the chance that the bicycle could flip over. Minimal play was achieved
between the potentiometer and the front frame by directly connecting the sensor to the
steering axis via a flexible coupling that compensated for a small misalignment of the
steering axis with the sensor axis. A transmission was thus avoided. A drawback to this
method was that the output range of the signal was small.

Forward speed sensor: Forward speed was measured by means of a standard speedometer
(Avocet Altimeter 50). This unit uses a magnetic ring with 10 north/south poles and a
pick-up. The magnetic ring was mounted on the rear wheel (forward speed is defined as
v = —6,R,,) and the pick-up was connected to one of the analogue channels of the USB
data acquisition unit, as in Fig. 3c. The speedometer was placed on an aluminium shaft that
was connected to the saddle clamp. With the speedometer in this position the speed values
shown on its screen were clearly legible when running behind and alongside the bicycle.
However, the refresh rate of the computer was too slow and full attention of the launcher
was usually needed to launch the bicycle in a proper manner.

Data acquisition unit: A Universal Standard Bus (USB) connected data acquisition unit
(National Instruments NI-USB-6009) was used. This unit has eight 14-bit analogue input
channels, 12 digital I/O lines, two analogue outputs and one counter. Only the analogue
inputs were used. The data acquisition unit was bolted to the rear carrier as in Fig. 3a.

Laptop: For data collection a laptop was used (ACER 340 Travelmate with a Sitecom USB
2.0 PCMCIA card installed). The laptop was placed on the rear carrier, reducing the dy-
namic stability of the bicycle [14], but the fixation was easily achieved whilst remaining
compatible for other bicycles. The laptop was placed in a steel frame with padding that
was mechanically bolted to the rear carrier such that the centre of mass of the laptop and
steel frame was over the bicycle symmetry plane. The laptop was kept in the frame by two
Velcro straps.

Battery pack: The DC power supply for the rate gyros was a battery pack (BMI NI-CD
4.8V 2100 mAh) cable-tied to the rear frame as in Fig. 3a.
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120 J.D.G. Kooijman et al.

Table 1 Design parameters for the bicycle model from Fig. 1 together with measured values for the instru-
mented bicycle from Fig. 2

Parameter Symbol Value for instrumented bicycle
‘Wheel base w 1.010 m

Trail t 0.190 m

Head angle o 69°

Gravity g 9.81 N/kg

Forward speed v variable m/s

Rear wheel

Radius Ryw 0.3500 m
Mass Mpy 2.56 kg
Mass moment of inertia (Axx, Ayy, Azz) (0.078, 0.156, 0.078) kg m2
Rear frame
Position centre of mass (x,f, Yrfs zrf) (0.320, 0, —0.627) m
Mass myf 12.06 kg
Mass moment of inertia By O By 08155 0 0.0327
0 By O 0 12 0 |kgm?
Bx; 0 B 0.0327 0 1.0825
Front frame
Position centre of mass (xff, Vffs fo) (0.907, 0, —0.800) m
Mass myf 2.54 kg
Mass moment of inertia Cyx 0 Cxs 0.0860 0 —0.0311
0 Cy O 0 0.1 0 kgm?
Cx; 0 Cg —0.0311 0 0.0169
Front wheel
Radius Ry 0.3485 m
Mass mfy 2.05 kg
Mass moment of inertia (Dxx, Dyy, Dzz) (0.081, 0.162, 0.081) kg m?

Subscripts used are: rw for the rear wheel, rf for the rear frame, ff for the front frame, fw for the front
wheel, x, y, and z are the directions along the global xyz-axes with the origin O at the rear contact point.
Centre of mass locations for the individual parts are expressed with respect to the origin O, whereas mass
moments of inertia are about the centres of mass and use axes that are initially aligned with the global xyz-
axes

3 Measuring the bicycle design parameters

In order to predict the dynamic behaviour of the instrumented bicycle by means of the lin-
earized equations of motion of the bicycle model (see Appendix), all 25 bicycle design
parameters had to be measured. These measured values are presented in Table 1. The bicy-
cle was measured with all the measurement equipment installed, including the laptop and
sidewheels. The bicycle parameters can be divided into two groups, geometrical properties
and mass properties.

3.1 Geometrical properties

The geometrical parameters shown schematically in Fig. 1 were measured as follows.
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Wheelbase: The distance from the centre of the front contact patch to the centre of the rear
contact patch measured on level ground whilst the front fork was aligned with the rear
frame.

Head angle: Measured on level ground with the bicycle vertical by placing a protractor
with integrated spirit level against the front of the head tube.

Trail: On level ground with the bicycle vertical and with the front fork facing forwards.
By extending the head tube by means of a plate and rod. The trail was then determined by
measuring the distance parallel to the x-axis of the bicycle between the contact point of the
front wheel and the intersection of the head tube with the ground.

Wheel radius: This was determined by measuring the distance covered by the bicycle,
when the wheel that was being measured travelled nine full rotations along a straight line
on a level floor, where the tires were inflated to 3.5 bar. Nine rotations were used as this
was the maximum amount that could be measured with a 30 m long measuring tape. The
measured distance was then divided by 18 to get the effective rolling radius.

3.2 Mass properties

The numerical model requires the mass and inertia properties of the four separate parts: rear
wheel, rear frame assembly, front handlebar assembly, and front wheel. For each part the
mass, the location of its centre of mass and the mass moments of inertia with respect to axes
through the centre of mass and parallel to the global xyz-axes in the reference position (see
Fig. 1) had to be found.

The mass of the parts was easily measured on a set of scales to an accuracy of £0.01 kg.
Determining the mass moments of inertia of the parts turned out to be more difficult.

Given the simple geometry of the four bicycle parts, one would think it would be easy to
calculate the mass moments of inertia from a measured geometry model. However, serious
problems were encountered:

1. All the measuring equipment, their brackets and the sidewheel construction had to be
modelled. Since none of the sensors or the computer have constant densities, assigning
the correct mass moments of inertia to them without actually measuring them is almost
impossible.

2. The wall thickness of most of the tubes was not known. Thus without drilling a hole in
most of the tubes these could not be measured. It was also unknown if the wall thickness
was constant in each tube.

3. Most of the tubes of the front and rear frame do not have a constant cross-section, in-
creasing the complexity of the model.

Thus it was decided that the mass moment of inertia parameters of the instrumented
bicycle would be measured instead. To this end, a torsional pendulum was constructed.

3.2.1 Measuring the mass moments of inertia

The mass moments of inertia of the four individual parts were measured by means of a
torsional pendulum, as shown in Fig. 4. The torsional pendulum was made of a slender steel
rod, 1 m long and 5 mm diameter, that was clamped vertically at the upper end. The lower
end of the rod was connected by a stiff coupling to the bicycle part to be measured. The
torsion rod was clamped over a length of 4 cm at both ends leaving a free length of 92 cm.
The bicycle part was clamped such that its centre of mass was aligned with the rotational
axis of the rod. This ensured that measurement was made about a centre of mass axis of
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122 J.D.G. Kooijman et al.

Fig. 4 Torsional pendulum with
rear frame clamped in the
bracket. The centre of mass of
the rear frame is aligned with the
vertical axis of the torsional rod

the part and that there was no bending moment in the rod that could disturb the angular
oscillation of the system.

The bicycle part was then manually set into an angular oscillation about the vertical axis
and the time period of the oscillation was measured. The part was given only a small initial
rotation to ensure elastic material behaviour in the rod.

The equation of motion for the torsional pendulum is given by

. 1
16 + [%]9:0, (1

where Iy is the mass moment of inertia of the part about the vertical axis, & the angular
acceleration of the lower end of the rod, / is the length of the rod, G the shear modulus of
elasticity of the rod material (steel was used) and Ip the polar area moment of inertia of the
cross-section of the rod. The mass moment of inertia of the clamp that held the bicycle part
was very small compared with that of the bicycle part, and its contribution was neglected.
Therefore the mass moment of inertia of the measured part along the vertical axis could be

calculated as
T \’[GIp
Iy=|— —, 2
v= () 7] @
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where T is the time period for one oscillation. Actually, the torsional stiffness GIp /I was
not calculated but measured by a torsional vibration experiment with a known object (a hor-
izontal slender rod was used), which ensured more accurate results.

Under the assumption that all parts have a vertical symmetry plane (xz) the mass mo-
ment of inertia matrix expressed in the body fixed xyz-axes at the centre of mass takes the
following form

L 0 I
I=| 0 I, 0 |. 3
L. 0 I,

Therefore only four out of the six mass moment of inertia terms of the 3 x 3 symmetric
inertia matrix had to be determined. Moreover, since the pitch motion is not present in the
linearized model of the upright bicycle there was no need to measure the mass moment
of inertia along this pitch axis, I,,, and an educated guess was made. This reduced the
necessary number of measurements to three.

For the rear frame assembly (all measurement equipment installed) the experiment was
carried out on the three main frame tubes of the rear frame: the sloping lower tube, the top
tube and the seat tube. For the front frame the experiment was carried out with the clamp on
the head tube about the pitch and roll axes and about the handlebar for the yaw axis. Figure 4
shows the rear frame, with the saddle tube held in the clamp.

The measurement of the wheel inertia was done in two separate tests. The first was carried
out using the torsional pendulum to measure the mass moment of inertia about the wheel’s
global x- and z-axis (identical). The second test was to determine the mass moment of inertia
about the rotation axis, /,,. In a compound pendulum experiment the wheel was hung from
a horizontally placed nail and given a small offset to bring the wheel into an oscillation
and the time was measured. Then, with the known total mass and distance to the centre of
mass, the mass moment of inertia about the axle axis could be calculated using the parallel
axis theorem. Note that in this way the mass moment of inertia was overestimated a little,
because of the small non-rotating parts at the hub.

The wheels were weighed as one complete unit even though in the linearized dynamic
model the wheels are modelled as only the rotating part of the wheel. The inaccuracy for the
model was considered negligible because the masses of the non-rotating parts at the hub are
small.

3.3 Processing of the mass moments of inertia

In order to be able to calculate the mass moments of inertia in the global axes about the centre
of mass for the different parts, the mass moment of inertia tensors had to be rotated. To do
this the angle under which the frame had been hung had to be calculated. Photographs were
taken with the camera held horizontally, perpendicular to the frame. Each photograph was
taken in the same position and the same distance from the part for each of the experiments.
Then together with the information that the top tube has a 5° slope relative to the global
x-axis when the bicycle is on level ground, the angle under which the frame was hung in
each case relative to the global x-axis was calculated.

Next the position of the centre of mass was found. Using the same photographs and plac-
ing them on top of one another and extending the torsion rods the location of the centre
of mass was found. The location of the centre of mass of the part as found in the pho-
tograph was then transformed to the global coordinates by measuring tube lengths in the
photographs, comparing them with the actual lengths and calculating the scale factor.
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124 J.D.G. Kooijman et al.

For the rear frame assembly, three measurements, /;, about three different axes, e;, in the
xz-plane were made. The three unknown terms, /.., /.., and I,,, from the mass moment of
inertia matrix (3) were then solved from the set of linear equations

elle, =1, i=1,23. 4)

The front fork and handlebar assembly was measured in the same manner, where it should be
noted that the mass moment of inertia about the steering axis was small in comparison with
the other entries in the inertia matrix and should have been measured with a more compliant
torsion bar.

3.4 Measured design parameters and linearized equations of motion

The measured mass moments of inertia and centres of mass of all parts together with the
other measured bicycle parameters are presented in Table 1. From these measured para-
meters the coefficient matrices of the linearized equations of motion from the Appendix,
(31-34), are calculated as:

M — 7.98981, 0.89569 Co— 0, 7.17025
~10.89569, 0.29857 |’ 171 -0.59389, 1.32610 |’
(5
Ko — —109.91168, —13.45745 K, — 0, 11.19798
0= | —13.45745, —4.82272 |’ 2710, 1.42200 |
Then, with these coefficient matrices the characteristic equation,
det(MA? +vCiA + Ko + v°K;) =0, (©6)

can be formed and the eigenvalues, A, can be calculated. These calculated eigenvalues, in
the forward speed range of 0 < v <9 m/s, are presented by the continuous lines in Fig. 7. In
principle there are up to four eigenmodes, where oscillatory eigenmodes come in pairs. Two
are significant and are traditionally called the capsize mode and weave mode. The capsize
mode corresponds to a real eigenvalue with eigenvector dominated by lean: when unstable,
the bicycle just falls over like a capsizing ship. The weave mode is an oscillatory motion
in which the bicycle sways about the headed direction. The third remaining eigenmode is
the overall stable castering mode which corresponds to a large negative real eigenvalue with
eigenvector dominated by steering.

4 Experimental procedure and results

Measurements were recorded for the case in which the bicycle coasted freely on a level
surface. From these measured data eigenvalues were extracted by means of curve fitting.
These eigenvalues were then compared with the results from the linearized equations of
motion of the model. As a result, the model appeared to be fairly accurate for the low-speed
low-frequency behaviour.
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4.1 Expected motions

Looking at the eigenvalue plot in Fig. 7, the following bicycle motions during the exper-
iments can be expected. At low speed the motion of the free-coasting laterally-perturbed
bicycle will be dominated by the unstable weave motion. Both the capsize and the caster-
ing mode are very stable here and any initial transient will quickly die out. The time frame
for measurement will be short due to the unstable nature of the weave motion. Then in the
stable speed range, again the motion will be dominated by the oscillatory weave motion.
The moderately stable/unstable capsize motion will only give a small offset in the lean rate.
Here, the measurement window will be large since the motion is oscillatory stable.

4.2 Test procedure

The experiments were carried out in the university sports hall. The 42 x 25 m sports hall
had a dry, level floor with a rubbery surface layer as can be found in any modern sports hall.
A total of 76 runs were carried out. Each run consisted of three segments. In the first
segment the bicycle was brought up to speed and during high speed runs the bicycle was
then laterally perturbed by hitting the rear frame. In the second segment the bicycle was
allowed to coast freely and in third segment the bicycle was brought back to a standstill.

A restriction on the spread of the measurements was the top speed of the person pro-
pelling the bicycle along as the person not only had to be able to accelerate the bicycle in as
short a distance as possible but also had to be able to run alongside the bicycle and bring it
back to a standstill before it collided with the wall.

To measure the dynamic response of the bicycle at the different speeds and to calculate
the corresponding motion eigenvalues the bicycle had to show some lateral dynamics. At
speeds below the stable speed range no external excitation was required. Due to small im-
perfect or non-perfect initial conditions, the bicycle always started to weave about its general
heading and this motion was measured. Moreover, the small asymmetry caused the bicycle
to lean to the right when released, which thereby ended up rolling in a large circle rather
than a straight line.

For runs in the stable speed range, the bicycle set itself in an upright position and showed
no dynamic behaviour unless it was given a lateral excitation. This excitation was accom-
plished by applying a lateral impulse to the bicycle by simply hitting the bicycle’s rear frame
by hand in the lateral direction at approximately the insertion of the saddle pillar with the
down tube.

Two runs were carried out to determine the zero speed inverted pendulum eigenvalue.
Eight runs were carried out at low speed (around 2 m/s), and the majority of the tests (56)
were carried out in the transition region from unstable weave to stable weave motion (3.5—
5 m/s). Ten tests were carried out at higher speeds up to about 6 m/s. At forward speeds
of less than 2 m/s the bicycle was very unstable, giving only a very short time window for
measurements.

4.3 Stored data

The frequency of the weave of motion is low, at the order of 1 Hz (see Fig. 7) and therefore
only a low sample rate was needed here. However, the measurement of the forward speed by
means of the 10-magnet ring needed a higher sampling rate. The first tests were measured
with a 100 Hz sample frequency. Later the sample frequency was set to 400 Hz to ensure
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no aliasing in the speed signal would take place when testing at a higher speed. Unfortu-
nately, higher sampling frequencies gave a very erratic signal at the recorder steering angle
potentiometer signal. The recorded data for each run were stored in a text file.

Every run was recorded on video, too. An example of such a recording can be found
at [19]. This turned out to be essential for the processing of the run data and helped to
identify nonstandard measurements, the quality of the launch, etc. It was thus possible to
compare the recorded data afterwards with the video images and to extract the relevant data
for the calculation of the eigenvalues from each file.

4.4 Data analysis

For each run the raw data were transferred to Matlab and first inspected visually. A plot of
the raw data for run 52 is shown in Fig. 5. In the figure the signals from top to bottom are:
battery voltage, steering angle, lean rate, yaw rate, and speedometer. These graphs were used
together with the videos of the runs to locate the time window in which the bicycle coasted
freely for each run. Once this window was manually located, a curve fit of the time histories
of the eigenmotions was performed on the lean rate data to extract the measured eigenvalues
as shown in Fig. 6. Above a forward speed of 0.1 m/s there is in principle a sum of three
eigenmodes to be fitted: the castering mode, the capsize mode and the oscillatory weave
mode, as shown in Fig. 7. The castering mode is highly damped and will vanish quickly
from the transient signal. The capsize mode is also reasonably damped below the weave
speed and is mildly unstable above the weave speed, resulting here in a small and slow lean
rate offset. Therefore only an exponentially damped or growing oscillatory weave motion

signals [V]
5 \ J‘
\ Battery voltage
! |
Steering angle Lean rate
3 N‘\“*\——-w\/rrfr\ s e + el
| P Yaw rate !

B S S g

’ |
speed-up push-off coasting return
’ |
Speedometer

0
-1

4 5 6 7 8 9 10 13 14

11 12
t [sec]

Fig. 5 The raw measured data from run 52. The signals from top to bottom are: battery voltage, steering
angle, lean rate, yaw rate, and speedometer. The forward speed is around 5 m/s, which is clearly within the
stable speed range (see Fig. 7). Note the three different motion regimes: speed-up, coasting, and return to
base

@ Springer



Experimental validation of a model of an uncontrolled bicycle 127

Lean rate [V] Forward speed [m/s]
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Fig. 6 Least-squares curve fit of the oscillatory stable lean rate time history (solid smooth curve) to the
measured lean rate (ragged line) for run 52, together with the measured forward speed (staircase line) and
linear regression of the forward speed (dashed line). Note the slight decrease in forward speed (from 5.4 to 4.8
m/s) during the measurement. The extracted weave eigenvalue within the time window of 9.9 <t <125 s s
Aweave = —1.16 £5.44i 1/s

was fitted to the data. The function to be fitted on the measured lean rate was taken as
¢ =ci + e [crcos(wt) + ey sin(wr)], )

with the weave frequency w = Im(Ayeave), the weave damping d = Re(Ayeave) and the three
constants c¢; for the offset, ¢, for the cosine amplitude, and c; for the sine amplitude. Since
the weave frequency and damping appear in a non-linear way in the function, a non-linear
least-squares fitting method was used (Matlab’s fminsearch) to extract the eigenvalues.

The speedometer signal (see Fig. 5) was an oscillatory signal with a frequency of ten
times the rear wheel rotation frequency. The signal was converted to a forward speed by
counting the time between successive zero crossings. As each crossing represents a 1/20th
of a complete rear wheel rotation, an average speed for that portion could be calculated; this
is the staircase line in Fig. 6. As the forward speed during the coasting section of the mea-
surements slowly decreased due to air resistance and rolling resistance, a speed range was
assigned to the calculated A’s instead of one specific speed. This speed range was calculated
by looking at the linear regression of the speed for the chosen time window, see Fig. 6.

At zero speed two measurement were made. Since the bicycle just falls over in an inverted
pendulum manner, only an exponential growing solution was fitted to the lean rate data and
only one eigenvalue was extracted. Finally, in Fig. 7 the measured eigenvalues for all runs
were plotted on top of the calculated eigenvalues, with horizontal bars used to indicate the
forward speed variation during the measurements.

4.5 Discussion

At speeds above 3 m/s, the predicted weave frequency and damping by the model were
forecasted accurately. The transition from the unstable to the stable region around the weave
speed is accurately described by the model.

In the unstable speed region, below 3 m/s, it turned out to be very difficult to measure the
motion of the bicycle. The time window for measurement was very short compared with the
time period of the weave motion. Therefore, trying to fit only a part of a harmonic function
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Re(M\) [1/s], Im()\)[1/s] Measured A [1/s]

. ‘ —
/
—A—
s

Capsize N —~——_|

Y Castering Stable

- 6 | | | | | | |
0 1 2 3 4 5 6 7 8 9
Viweave v [m/s] Veapsize

Fig. 7 Measured eigenvalues A (horizontal bars) and calculated eigenvalues A (continuous lines) for the
instrumented bicycle from Figs. 1 and 2, and Table 1, in the forward speed range of 0 < v <9 m/s. For the
measured values only the weave motion is considered. The lengths of the horizontal bars indicate the forward
speed range during the measurement. For the calculated values the solid lines correspond to the real part of
the eigenvalues and the dashed line corresponds to the imaginary part of the eigenvalues. The zero crossings
of the real part of the eigenvalues are for the weave motion at the weave speed vweave ~ 4.0 m/s and for
the capsize motion at capsize speed veapsize =~ 7.9 m/s. The speed range for the asymptotic stability of the
instrumented bicycle is vweave < U < Veapsize

to the measured data turned out to be very difficult and the results showed considerable
spread.

The yaw rate signal was of the same quality as the lean rate signal, but the steering angle
signal turned out to be too small and too erratic to use.

5 Conclusions

The experimental results show a fairly good agreement with the results obtained by a lin-
earized analysis on a three-degree-of-freedom dynamic model of an uncontrolled bicycle.
This shows that the tire compliance, tire slip, and frame and fork compliance are not impor-
tant for the lateral dynamics of the bicycle in the forward speed range of 0 to 6 m/s. The
same result was found from theoretical considerations by Limebeer and Sharp [9], which
showed that eigenfrequencies and damping ratios in the low-speed range were only slightly
influenced by including these effects. For a bicycle with a rider and a normal trail, the rela-
tive movements of the rider and the tire properties might prove to have more influence.
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The validated bicycle model can be used, among others, to design a controller for the
(mostly) unstable bicycle.

Appendix: Linearized equations of motion

This appendix gives a summary of the algorithmic interpretation of the linearized equations
of motion as presented in [17].

Consider the bicycle from Fig. 1 and Table 1. The linearized equations of motion ex-
pressed in terms of small changes in the lateral degrees of freedom being the rear frame
roll angle, ¢, and the steering angle, &, from the upright straight ahead configuration
(¢,8) =(0,0), at a forward speed of v = —6, R,,, have the form

Mg +vCiq + [Ko + v’Kz g =1, ®)

where the time-varying variables are q = [¢, §]” and f = [Ty, T517. The coefficients in this
equation are: a constant symmetric mass matrix, M, a damping-like (there is no real damp-
ing) matrix, vCy, which is linear in the forward speed v, and a stiffness matrix which is the
sum of a constant symmetric part, Ky, and a part, v?K,, which is quadratic in the forward
speed. The forces on the right-hand side, f, are the applied forces which are energetically
dual to the degrees of freedom q. For the bicycle model the first is 7}, the action—reaction
roll torque between the fixed space and the rear frame. The second force is Ty, the action—
reaction steering torque between the rear frame and the front frame about the steering axis.
In the case of an uncontrolled bicycle, both of these torques are taken to be zero.

The entries in the constant coefficient matrices M, Cy, Ky, and K, are defined algorith-
mically as follows. For the system as a whole, calculate the total mass and the corresponding
centre of mass with respect to the origin O as

My =Mpy + Mg +Mpr+Mpy, 9
X = (ppmpp + Xppmpr +wmpy)/my, (10)
3 = (_Rrwmrw +ermrf +fomff - wamfw)/mt- (11)

For the system as a whole, calculate the relevant mass moments and products of inertia at
the origin O along the global axes as

Txx = Axx + Bxx + C)cx + D)cx + mrwaw + mer%_f + mffz_2ff + mwa%w’ (12)
Tio = Boo ot Cog = MypXypZop = MypXprZpp +mppWR pu, (13)

T..=A,+B,;+C,.+ D, + m,_,-xff + mf_,-x]ch + mfwwz. (14)

Now determine the same properties for the front assembly, comprising the front frame and
the front wheel, as

my=mgr+mgy, (15)
xp=(xppmpr +wmpy)/my, (16)
Zf:(szmff_wamfw)/mfa a7
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and calculate the relevant mass moments and products of inertia for the front assembly at
the centre of mass of the front assembly along the global axes as

Firy = Cix + Dy +mff(sz - Zf)2 +mfw(wa + Zf)za (18)
Foo = Cog=mypp(xpp = xp) @ = 25) +mpu(W —x)(Rpw +25), (19)
F.=C.+D_ .+ mff(xff - xf)2 + m_fw(w - xf)2~ (20)

Let X be the angle of the steering axis A = (sin(1), 0, cos())7 with the global z-axis in the
vertical plane,

A=m/2—a. 1)

Calculate the perpendicular distance that the centre of mass of the front assembly is ahead
of the steering axis,

u=(xy—w—1)cos(r) — zysin(A). (22)

Calculate for the front assembly the relevant mass moments and products of inertia along
the steering axis and the global axes at points where they intersect as

Fyy = msu® + Fy,sin(A)* +2F,, sin(A) cos(A) + F,, cos(1)?, (23)
Fox = —mysuzy + Fysin(d) + Fy; cos(R), (24)
Fo. =mysuxy + Fy sin(d) + F,. cos(}L). (25)

Define the ratio of the mechanical trail (i.e., the perpendicular distance that the front wheel
contact point is behind the steering axis) to the wheelbase as

f =tcos(A)/w. (26)

Calculate for the rear and the front wheel the angular momentum along the y-axis divided
by the forward speed, together with their sum as

Sy = A)‘)’/RruM (27)
Sy = Dyy/Ryuw, (28)
S =8+S5;. (29)

Define a frequently appearing static moment term as
Sy=mgpu+ fmx,. (30)
The elements of the symmetric mass matrix are
M1, 1) =Ty,
M(1,2) = Fx + [Tk,

M2, 1)=M(,2),
M?2,2)=F +2fFp. + f°T..

€1y}
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The “damping” matrix which is to be multiplied by the forward speed, v, is given by

Ci(1,1) =0,
Ci(1,2) =8 + Sycos(A) + Ty cos(A)/w — fm,z,,

(32)
Ci1(2, 1) =—(fS, + Sy cos(V)),
C1(2,2) = Fy.cos(M)/w + f(Su + To. cos(M) /w).
The velocity-independent elements of the stiffness matrix are
Ko(1,1) = gm,z,
Ko(1,2) = —gS,,
(33)

Ko(2,1) = Ko(1,2),
Ko(2,2) = —g§, sin(}),

and the elements of the stiffness matrix to be multiplied by the square of the forward
speed, v?, are

K>(1,1) =0,
K>(1,2) = (S; —myzy) cos(A) /w,

(34)
K>(2,1) =0,

K>(2,2) = (S, + Sy sin(A)) cos(r) /w.
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