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A multibody kinematic system approach for the
design of shape-morphing mechanism-based
metamaterials
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Shape-morphing structures have the ability to adapt to various target shapes, offering sig-

nificant advantages for many applications. However, predicting their behavior presents

challenges. Here, we present a method to assess the shape-matching behavior of shape-

morphing structures using a multibody systems approach wherein the structure is repre-

sented by a collection of nodes and their associated constraints. This representation pre-

serves the kinematic properties of the original structure while allowing for a rigorous

treatment of the shape-morphing behavior of the underlying metamaterial. We assessed the

utility of the proposed method by applying it to a wide range of 2D/3D sample shape-

morphing structures. A modular system of joints and links was also 3D printed for the

experimental realization of the systems under study. Both our simulations and the experi-

ments confirmed the ability of the presented technique to capture the true shape-morphing

behavior of complex shape-morphing metamaterials.
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Shape transformation or shape-morphing is a ubiquitous
phenomenon in nature. Organic materials, such as clay,
exhibit shape-morphing. Living organisms manifest such

behaviors too. Examples are plants, such as codariocalyx motorius
(or telegraph plants), venus flytraps, pine cones, or animals, such
as octopuses with their tentacles or tree frogs and their toe
pads1–7. Many biological materials can deform their bodies sub-
stantially without losing their integrity in a response to external
stimuli, such as temperature, humidity, and predation. Shape-
morphing then serves as a means to facilitate other biological
processes. The microstructures of such biological materials are
responsible for their (dynamic) shape-morphing behavior.

Shape-morphing has numerous applications in (high added
value) industries7. These include architecture8,9, furniture10,
automotive (interior11, exterior12), soft robotics13, and biomedical
engineering. In those fields, we often tweak structures on the
microscale to make them morph their shape in such a way that
they can resemble the contour of another object. This type of
shape transformation is useful when an object needs to maximize
its contact area with another object (Fig. 1a). Changing the shape
of grippers and fixtures to comply with the shape of the objects
they grab onto or propel over helps in distributing the contact
forces in the most favorable manner. To design shape-morphing
objects that deliver the most favorable shape transformation
properties, designers often resort to architected materials that are
otherwise referred to as metamaterials14.

Metamaterials allow us to design shape-morphing objects that
incorporate other desired properties as well. Materials like clay
are almost perfect in matching shapes, but are also continua. A
more porous metamaterial could have the shape-morphing
properties of clay but be lighter or offer other advantages affor-
ded by its cavities (e.g., bony ingrowth in the case of orthopedic
implants). Furthermore, an architected metamaterial makes it
possible to realize effective (mechanical) properties that the base
material used to create the metamaterial lacks. Shape-morphing
metamaterials can, for example, fold (origami/kirigami)15,
bend14,16, or deform through kinematic joints17. Here, we
investigate the versatility of the shape-morphing behavior of such
kinematic structures.

Kinematic structures can be created from highly stiff materials
but still exhibit shape transformations17,18. One could, for
example, connect (relatively) rigid parts through kinematic or
compliant joints that are made from a base material with high
stiffness. The complete structure then possesses the overall ability
to easily adapt its shape. We see many manifestations of physical
kinematic structures17,18. A successful design of a metamaterial
with a “universal shape-morphing” behavior relies on the rational
geometrical design of its connecting elements (i.e., links) and
joints.

In this paper, we introduce a methodology to predict the
shape-morphing behavior of architected kinematic structures.
Through several examples, we illustrate the connection between
this representation and physical phenomena. These predictions
are essential because they enable an analysis of the envelope of
possible shape transformations for any given design. Such an
envelope of possible shapes can then be assessed in its own right.

Mobility describes the possible motions that an object can
undergo. This number of motions is captured by the degrees of
freedom (DoF) of the object. A single rigid body has six DoF in
3D: rotations around three axes and translations along three axes.
A deforming body has more DoF: as many as there are isolated
possibilities to deform. Solidly deforming objects have an infinite
number of DoF and can, therefore, transform theoretically into
infinitely many shapes. This is illustrated in Fig. 1a, b. Such
structures are generally studied by finite element modeling
(FEM)19–22. Kinematic structures, illustrated in Fig. 1c–e, have a

limited number of DoF. The current designs and mathematical
representations of shape-morphing structures often have limited
mobility and can transform, or be deployed, from one starting
shape into one final shape, as the final shape is programmed into
the design of the mechanism15,23–29. The more DoF a structure
has, the more shapes it can match. For a structure with limited
mobility, it might be possible to predict the shapes it can attain.
However, even with a limited number of DoF, a structure could
match a vast number of different shapes. Simulations are needed
to determine whether and how well a structure can deform into
different shapes. To perform these simulations, we turn to the
theory of rigid multibody systems.

Rigid multibody systems describe the motions of structures
consisting of rigid bodies and (kinematic) joints. Since we are
modeling kinematic structures, we need to make sure their
integrity is not violated. In fields that deal with shape-morphing

Fig. 1 An illustration of the ability of different structures to deform. a A
solid deforming structure with an infinite number of DoF. A single structure
can deform to take the shape of different substrates. b A solid deforming
structure with an infinite number of DoF, which more easily deforms along
specific directions. c A multibody structure with both kinematic and
compliant spherical joints, providing it with many transformation DoF. d A
multibody structure with both kinematic and compliant hinges, affording it
by a few transformation DoF. e A multibody structure with prismatic joints,
leaving one transformation DoF. In the multibody examples, the revolute
hinges are represented by “cans”42.
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(e.g. (meshing) in computer graphics/vision30–32), shapes are
often described using points and vertices. Combining this
approach with multibody principles assures that such a mesh can
also describe the motions of a physical structure. This would
guarantee that the integrity of the structure is preserved and that
the relations between the different sections of the structure are
maintained during the whole process of shape transformation.
This idea of using points motivates the use of a discrete multibody
approach.

A discrete multibody approach defines the entire kinematic
structure by looking at specific points of interest. This is a sys-
tematic and scalable approach that we adopt here because we are
primarily interested in the kinematics and not so much in the
kinetics of such architected materials. A morphing shape is said to
resemble another shape when they share enough contact points.
To match a discrete structure to a shape, one must move selected
points within the structure toward their target locations. This
discretization of solid bodies to points is already used in multi-
body dynamics33–37. Here, however, the approach is specifically
tailored to study shape-morphing with as few nodes as possible.
Such an approach also makes sure that kinematic structures can
be modeled in a systematic way and that the obtained simulations
are free from singularities. With this design representation, for
any given target shape, we can determine how well a structure
design is able to approach this shape. This could provide means
to find combinations of design parameters that result in optimal
designs. We assess the utility of the developed method by per-
forming both simulations and experiments. The experiments are
performed using an additively manufactured (AM or 3D printed)
modular system that enables us to connect links and joints in
arbitrarily complex ways, thereby creating many possible designs
of kinematic structures.

Results
The simulation results corresponding to case studies show that
the proposed design representation in the current study for
modeling the shape-morphing behavior of kinematic structures
works well in terms of finding the correct matching shape. The
simulation and experimental results were generated by con-
sidering different sample structures that were specifically selected
to showcase the different types of constraints and their associated
shape-morphing behaviors. The kinematic structures used for the
assessment of the morphing behaviors of the sample cases were
created by defining their initial node positions and the constraints
limiting the relative motions of the nodes according to the gen-
erally developed principles (see Section “Structure representation”
in the Methods). Subsequently, a generally developed morphing
algorithm (see Section “Morphing simulation” in the Methods)
was applied to transform the shape of the mathematical structures
into a desired one. The here presented morphing simulations and
the experimental comparison with a physical representation fol-
low study-specific methods (see Section “Case studies” in the
Methods).

An overview of some sample structures and target shapes is
presented in Fig. 2. Here, a 3D deforming “pentapod” is com-
posed in such a way that it only has one morphing DoF (Fig. 2a).
There is a rationally designed coupling between the nodes along
different axes that makes this possible. Although the space in
which the movements take place is 3D, we can apply hinges in
such a way that only 2D in-plane morphing of structures is
possible (Fig. 2b). This structure has multiple DoF because of the
network of many hinges. A fully 3D defined structure with
spherical joints has many DoF and can transform its shape into
irregular 3D shapes (Fig. 2c).

In the specific examples considered here, not all nodes were
moved toward the target surface. We selected the peripheral
nodes of the structure as the “leading nodes” that moved toward
the target shape. The inner nodes were initially allowed to stay
close to their starting positions. The internal nodes followed the
leading nodes only when they had to provide extra movements so
that the leading nodes could approach their target positions.

The simulations confirmed the capability of the structures to
transform into the specific target shapes. The “leading nodes” at
the edges move toward the target shape. The nodes located at the
center of the structures remained mostly in their original posi-
tions, if they did not have to accommodate the movement of the
edge nodes. The residual error of the “pentapod” in (Fig. 2a) was
relatively large as compared to the other examples. That is due to
the fact that its target shape is irregular and the structure has
effectively only one transforming DoF. Moreover, the pentapod
showed “expansion” with increasing shape factor while the shape
factor of both other structures reduced. These results can be used
to improve the designs of these structures in terms of shape-
morphing behavior and reduce the residual error.

A comparison between the simulated shape-morphing and the
experimentally obtained shapes shows that they are in agreement
with each other. The 2D structure could deform into a 1D circular
shape (Fig. 3a), a 2D cylindrical surface (Fig. 3b), and a 3D
ellipsoidal enclosure (Fig. 3c). The simulations predicted this, and
although the physical dimensions and possible imperfections
limited the range of motion of the physical structure, it could
approximate the shape factor of the simulations.

Discussion
The multibody kinematic approach presented here provides the
required steps for an initial configuration to morph into a target
shape. This was initially demonstrated for different structures in a
first set of simulations (Fig. 2). To illustrate the working princi-
ples of the approach further and demonstrate the physical reali-
zation and compare it with our simulation results, we analyzed
the capabilities of the presented approach in predicting the shape-
morphing steps required for several arbitrary shapes.

A second set of experiments showed how one single structure
can morph into multiple shapes by simply defining different
target shapes. We simulated the behavior of a 2D structure that
morphs into various shapes in 1D, 2D, and 3D (Fig. 3). The
simple structure consisted of two triangular bodies connected
through spherical joints by a link. The same structure was
morphed into three different target shapes, including a circular
surface that made the structure deform in one plane along a line,
a curved surface that made the structure morph into an out-of-
plane shape, and an ellipsoidal enclosure that required the
structure to deform into a 3D shape. The different target shapes
of the substrates were purposely chosen to give the structure
compelling end shapes. Situations occurred where the combina-
tion of structure and target shape was too symmetric, leading to
bifurcations. Multiple routes to the target shape were equally ideal
which can lead to longer calculation times and undesired struc-
ture configurations. To circumvent this, symmetry was removed
by translating or rotating the target shape slightly with respect to
the morphing structure in order to break the alignment of the
symmetry axes of shape and structure.

In our physical representations, we followed the exact same
steps obtained from our simulations and found that the resulting
shapes matched the target shapes. We need to emphasize here
that the 3D printed structures had length ratios that were iden-
tical to the simulated ones. However, these physical experiments
also made it clear that the intermediate steps resulting from the
simulations are primarily of theoretical value. The different steps
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obtained for the shape-morphing process represent the shortest
trajectory from the initial shape to the target shape. This means
that our simulations do not take into account all the physical
properties of the joints. Some of the physical properties of joints
and links, such as their thicknesses, can limit their actual range of
motion. One way to apply such limits in the range of motion of a
node without changing the current way of defining constraints is
to add an additional node (Supplementary Note 3). The number
and location of nodes that represent a body are chosen carefully
in the experiments to represent a physical system while using as
few nodes as possible. Adding nodes carelessly can make the
calculations longer as well as giving undesired results (Supple-
mentary Note 4).

We used a two-step Gauss-Newton iterative procedure to make
sure the shape transformation trajectory was as close as possible
to the actual physical situation. In this procedure, the nodes were
moved toward their target first, followed by corrections that

ensured the constraints were satisfied to the desired level of
accuracy. The integrity of the system was, therefore, maintained
during the shape transformation process. Had we solved the
model simultaneously for both target-approaching trajectories
and constraint satisfaction, different final configurations would
have appeared that would have significantly deviated from what is
physically possible. The physical “insertability” of such shapes
would have, therefore, been less predictable. Doing the constraint
satisfaction in a separate step of the iterative process is a more
effective approach for maintaining the integrity of the kinematic
structure as the shape transformation takes place. The final shape
of the structure will then preserve its original topology.

Given that the primary purpose of the current paper is to
propose a straightforward model for the study of the shape-
morphing behavior of kinematic structures, we did not consider
some more advanced aspects of kinematic structures, such as
shape transformation in the presence of additional constraints

Fig. 2 Three sample applications of our shape-morphing simulations. Nodes are depicted by blue circles and links are represented by blue solid lines.
Line-point joints are depicted by dashed lines. For a selection of steps s, the configurations with shape factor S is shown. The targets for the upcoming step
are shown with dots. The distance error E indicates how far the current configuration is from the targets. a A “pentapod”matching its shape to a cylindrical
surface with a randomly varying radius. Only the five outer nodes were moved toward the shape. Line-point constraints were used to make the outer nodes
move in one plane (simultaneously). Next to the six DoF of the overall motion, this structure has only one shape-transforming DoF. b A structure with
square bodies connected by hinging links18 was morphed into a circular shape. Only the nodes on the edges were given target locations. Plane-point
constraints were used to restrain all the nodes in one plane. c A 3D structure with spherical joints was morphed into an organically created 3D shape. Only
the nodes on the bottom and side faces of the structure were given target locations.
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Fig. 3 Simulation of the transformation of the shape of a structure with triangular bodies into three different shapes. The target shapes are a, b a circle,
c, d a cylindrical surface and e, f an ellipsoidal enclosure. In each case, the simulated behavior is shown for selected steps s along with the physical
representation of the modular system corresponding to the initial and final configurations. The blue circular nodes are physically represented by orange
spheres. The 3D printed structure’s shape was captured using a 3D optical scanner. From the point cloud the yellow spheres were selected manually. Both
the normalized error E between the structure and the substrate and the normalized shape S are presented. The simulations stopped once the absolute
error difference �E was below 1 ⋅ 10−6. All the values were normalized with respect to a characteristic length which was chosen to be a representative value
of the initial shape at s= 0.
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that limit the range of motion of individual joints. Every joint
could, therefore, move freely along its DoF. In reality, however,
the physical nature of a structure limits the range of motion of
different joints in a joint- and location-specific manner.

The primary limitation of the proposed method lies in the
simplifications that make it somewhat deviate from the actual
physical situation. In particular, rigid bodies were simply defined
as a collection of theoretical nodes without volume. In the real
world, physical bodies occupy volume and cannot penetrate into
each other38,39. These aspects have not yet been included in the
presented modeling approach. The finite dimensions of the
physical structures and the limited range of motions of joints are
the other aspects missing from our approach. These omissions
mean that one needs to be careful about the selection of the nodes
that lie on the surface and the ones that do not. For a qualitative
assessment of the shape-morphing behavior, this does not pose a
problem but any quantitative results may be less accurate than
those of more complex models.

The current version of the proposed method is also purely
kinematic, meaning that stiffness is excluded from the equations.
The elements of the model are, thus, either fully rigid –and thus
non-deformable– or fully free to move along their DoF. Rigid
bodies are, therefore, assumed to possess infinite stiffness while
joints are inferred to have zero stiffness. To study how compliant
bodies and joints contribute to the shape-morphing behavior of
physical structures, we need to introduce forces. A theoretical
spring with a finite stiffness does not limit the motion of a point
in a multibody model. In reality, however, it limits the defor-
mation that is possible without material failure. Moreover, it can
also contribute to mobility through the deformation of parts that
are considered rigid in this multibody approach. By introducing
masses and/or stiffness values40 into the system, it would be
possible to investigate the reaction forces at different joints. Static
forces in the system can then be calculated by evaluating the local
stiffness in-between the nodes. This would be somewhat similar
to FE modeling. It is important to emphasize that while multi-
step simulations make it look like the kinematic structures move
toward their targets, this should not be misinterpreted as a
dynamic analysis. This movement purely represents the kine-
matically optimal path (i.e., the path with the shortest least-
square distance) that satisfies the imposed constraints. It is pos-
sible to extend the presented node-and-constraint model to
include kinetics. The bodies would then need to have at least four
nodes with assigned masses to be able to manifest the full kinetic
effects of their mass and moments of inertia. Implementing non-
rigid bodies is possible within the current modeling framework by
simply assigning stiffness values to the links.

To modify the model, one can change the way through which
we find the final position of nodes. In the presented method, the
nearest point on a surface was used, but this can be changed to
other norms, such as the 1-norm, a projection along an axis, or
the Hausdorff distance41. These methods have been used in
computer graphics algorithms31 that have many similarities to the
algorithm presented here. Another note regarding the search for
the target coordinates is that representing the target shape as a
point cloud makes the search computationally much more
expensive than if the target shape was represented by a function.
It is, therefore, advised to use a functional representation of the
target shape, as this would allow for more computationally effi-
cient handling of the function minima.

Conclusions
We proposed a simple method for the study of the shape-
morphing behavior of kinematic structures. We then applied this
design representation to a number of cases to demonstrate its

utility in predicting the shape-morphing behavior of a large class
of architected materials consisting of links, bodies, and joints with
various DoF. The simulation and experimental results obtained
for the case studies confirmed the ability of the proposed tech-
nique to match kinematic structures to arbitrary shapes through a
variety of mechanisms. The presented approach, therefore, pro-
vides us with a way of determining a structure’s ability to
transform into arbitrary shapes particularly when the target shape
is complex and does not lend itself to other more rudimentary
techniques of shape analysis. The methodological advances made
through the proposed technique pave the way for more sys-
tematic investigations of shape-morphing phenomena, including
the determination of the envelope of the shape-morphing beha-
viors that can be exhibited by any given kinematic structure. Such
information would be also essential for the algorithmic optimi-
zation of kinematic structures with the aim of making them
morph into any specific classes of shapes or for enlarging the
envelope of possible achievable shapes as much as possible.

Methods
Structure representation. The shape-morphing model proposed
here consists of two main components, namely nodes and con-
straints, with which the mobility of structures can be fully
described. Using this discrete approach, the overall configuration
of the structure is simply defined by evaluating the local dis-
placements of individual nodes in the 3D space. The analysis
starts by expressing the system in terms of nodes and constraints.
Subsequently, we find the possible motions of individual nodes
and transform the complete system into a target shape that is
defined as the superposition of the local motions of individual
nodes. Further information on the kinetics of the system (i.e.,
force and moments at individual nodes and links) can be also
inferred from this approach but is outside the scope of the
present study.

The mathematical description of a system with such few types
of elements is relatively straightforward and systematic, and relies
on positional descriptions provided by vectors and the applicable
vector algebra. Figure 4 illustrates the usage of vectors for such
mathematical descriptions. For each obstructed DoF, we define a
constraint c that vanishes at all times (i.e., c= 0). In what follows,
we describe the theoretical model by going from a single node
towards a full multibody system with different joints and a large
number of DoF.

Nodes, links and bodies. Nodes are the basic elements in the
description of our multibody systems and define the primary
points of interest. Moreover, constraints are written in terms of
the relative motions of nodes. The relative fixation and motion of
nodes can all be described in terms of vectors. A single node has
no dimensions. It, therefore, has only three DoF, including
translations along the x-, y-, and z-axis. The coordinate of a node
“1” is then defined as (Fig. 4a)

r1 ¼ x1 y1 z1
� �T

: ð1Þ

Each system can be modeled using n nodes whose relationships
with each other are described by m constraints. The overall
number of DoF of the system f can then be approximated as:
f= 3n−m. Multiple constraints may remove the same DoF. This
approximation may, therefore, not hold exactly. To describe the
relative motion between different (subsets of) nodes, we use the
node locations and relate them to each other.

Links are defined as a constant distance between two nodes
(Fig. 4b). Such a constraint removes one DoF from the set of
nodes. Therefore, a link has five DoF and can be considered as a
simplified body where the rotation is undefined along the link
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axis. To mathematically describe a link, the length of the vector
from one node to the other needs to be set equal to a constant. As
is shown in Fig. 4b, this is done through the constraint c. With the
relative vector between both nodes defined as d, the rigid link can

be formulated as d ⋅ d= d, where d is a prescribed constant of the
link. The constant value of d is, thus, calculated in the original
undeformed state. Since constraints need to always vanish, they
are written as c= d ⋅ d− d= 0.

Fig. 4 Description of the nodes and constraints as the building blocks of our modeling approach. Based on a multibody analysis of kinematic systems,
three rigid elements are considered: a A single node has three DoF, b A link is created by constraining the distance between two nodes, leaving five DoF,
c Linking three nodes creates a body with six DoF. d Nodes are rigidly added to a body through projections on a normal vector and the sides of the base
plane. e–m Different kinds of constraints and joints can be applied in-between bodies by using orthogonal and parallel vectors. The presented list of nine
examples is non-exclusive and non-exhaustive. Depending on the situation at hand, the same relative motions can be defined in different ways and more
constraints can be defined in terms of the relative motions of the system components. The triads depict the possible motions, either absolute (yellow) or
relative to another body (green).
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Bodies are composed of three out-of-line nodes whose relative
positions are rigidly constrained (Fig. 4c). This is the simplest
form of a rigid body, since it requires the minimum number of
nodes for a fully defined set of six DoF. The (sub)system of nodes
creating a rigid body has a position as well as orientations along
and about all three axes. In order to not prioritize any node over
another, the vectors are simply drawn in a head-tail fashion. Any
other choice in which all nodes are related to each other would be
acceptable too.

The three components defined above (i.e., nodes, links, and
bodies) are needed to define any other relationships between the
nodes. From here on, we describe two mutually compatible ways
separately. First, the body is extended with more nodes than the
base three. Secondly, we combine nodes with links and/or bodies
in order to generate large shape-morphing structures. In a
structure, we can encounter both simultaneously. Structures
could have bodies with more than three nodes and many different
joints between their elements.

Body-node. The number of nodes of a body can be extended
beyond three (Fig. 4d). However, singularity issues may arise
when distance constraints are used for the extra nodes positioned
within the plane formed by the three base nodes. We, therefore,
had to find a way to attach the extra nodes while avoiding such
singularities. Fortunately, the base body can be used to define the
normal vectors in such a way that singularity is avoided.

We propose to extend a body’s nodes beyond three by
projecting the relative distance vector of the extra nodes onto the
vectors related to the base plane. We start by separately projecting
the relative distance vector on either two of the three base plane
vectors. This provides us with two constraints. The remaining
constraint is then obtained by setting the normal distance to the
plane using the base plane’s normal vector. To construct the
normal vector, two separate vectors of the base are used (e.g.,
n= d2/1 × d3/2).

Kinematic joints. Kinematic joints, or kinematic pairs, were
introduced between nodes, links, and bodies to create transfor-
mation mechanisms. Every joint within a kinematic structure
allows for a certain type of motion between the nodes of the
system. There are many possible joint types of which nine
examples are presented in Fig. 4e–m. This list of examples is non-
exhaustive and serves solely to illustrate the principles. The
relative nodal behavior of such joints can often be expressed
through different definitions of constraints depending on what is
most convenient in any specific case. The general idea, however,
remains the same in all cases: the joints are mathematically
described by constraining the movement of vectors with respect
to each other.

One of the basic examples of joints that only confines
translation is the plane-point joint (Fig. 4e). This joint blocks
the relative translation of any arbitrary node (e.g., 4 in this
particular example) with respect to a node of the plane of a rigid
body. We, therefore, need a single constraint to describe this joint
type. This constraint includes the normal vector of the plane that
is found by taking the cross-product of two vectors of the plane.
Subsequently, a third vector from a plane point towards the to-
be-constrained point is projected on the normal vector. Since this
projection is set equal to zero, the vector is orthogonal.

The next example of a basic joint is the line-point joint. This
joint does not involve orthogonal vectors but is, instead, based on
parallel vectors. The idea behind this choice is that a minimum
number of nodes would be required as compared to the case
where orthogonal vectors are used. These orthogonal vectors
would need to be normal to the line and need an extra node to be
robustly defined34. This is a result of the hairy-ball theorem and

stems from the fact that a line has an infinite number of
orthogonal vectors (Supplementary Note 1). We circumvent this
issue by making the vectors parallel but not necessarily equal in
length. For the line-point joint, one of the vectors defines the line
while the other defines the position of the third node with respect
to one of the other nodes (Fig. 4f). Both vectors are subtracted
from each other to make them parallel and an extra DoF is added
in the form of a multiplier λ. Eventually, this joint has three
constraints but also introduces an extra DoF. The net effect of the
joint, therefore, is to remove two DoF from the system.

A prismatic joint allows for relative translation between bodies
(Fig. 4g). It uses two line-point constraints and a parallel plane-
line constraint. This last constraint is very similar to the plane-
point joint with the difference that the vector does not originate
from the body. This allows for translations as well as rotations.
Other joints that allow for both rotations and translations are the
parallel plane and cylindrical joints. Joints that only allow for
rotation are the spherical, universal, and hinge joints. The basic
elements of orthogonal and parallel vectors provide the means to
define the most common types of engineering joints.

System description. Kinematic structure are fully described
through their instantaneous configuration and the constrained
motions between their nodes. The overall configuration of the
system can be described using two main sets containing n nodal
coordinates and k multipliers:

x ¼ rT1 rT2 ¼ rTn
� �T

; ð2Þ

λ ¼ λ1 λ2 ¼ λk
� �T

: ð3Þ
The mathematical relations between all these nodes are the
constraints that are stored in an m × 1 constraint set:

c ¼ c1 c2 ¼ cm
� �T ¼ 0: ð4Þ

These constraints, which are usually nonlinear in x, make sure
that the configuration of the system remains within the kinematic
limitations of the structure, thereby safeguarding the overall
integrity of the structure during motions.

Morphing simulation. Once all the nodes and constraints are
defined, kinematic transformations can be analyzed. The simu-
lation has to be performed in an iterative manner from a start
configuration toward a target configuration. This iterative algo-
rithm uses the coordinates of a target shape and minimizes the
difference between the current configuration of the structure and
the target one. This process continues as the structure goes
through successive steps, s, that gradually bring it closer to the
target shape. The simulation stops when the change in the con-
figuration is negligible and the algorithm is said to have
converged.

We require a measure to assess the difference between the
current shape and the target one31. For that, we adopted the
normalized distance error between the current configuration of all
nodes, rj, and their target configuration, gj, which is defined as:

E ¼ 1
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

j¼1
ðrj � gjÞ � ðrj � gjÞ

s
; ð5Þ

where n is the total number of nodes and L is a characteristic
length of the structure. This metric effectively measures the
standard deviation of the distances between the locations of
individual nodes and their target locations.

To assess the achieved shapes, we introduced a nondimensio-
nalized shape factor, S. The error defined in (5) measures how
well a structure matches a target shape but does not tell us how
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the different shapes of a structure compare to each other. We,
therefore, defined the shape factor such that it measures the
standard deviation of the node locations from the instantaneous
centroid of the structure:

S ¼ 1
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

j¼1
rj �

1
n
∑
n

j¼1
rj

� �
� rj �

1
n
∑
n

j¼1
rj

� �s
; ð6Þ

where 1
n∑

n
j¼1 rj is the instantaneous centroid of the structure

while L is a characteristic length of the structure. While this
number may be the same for highly different structures, it allows
for a quick first comparison between different shapes.

The iterative process of morphing the structure continues until
the configuration does not change anymore. We can choose to
evaluate either E or S to decide whether the end configuration has
been reached. Here, we measured the absolute difference in error
with respect to a step, �E ¼ jdE=dsj, and repeated the process until
�E was within a specified tolerance. This process is illustrated in
Fig. 5.

Goal coordinates. Every node, rj, needs to have a target location gj.
We adopted a method where the target points are chosen based
on the Euclidean distance (2-norm) between the node and a
target shape. As seen in Fig. 5a, the structure starts off with an
initial configuration x (no multiplier constraints). A to-be-
morphed-to shape is defined by the target configuration xg. In
most shape-morphing instances, the exact target location of each

node is not known beforehand. The target configuration can be
updated after each step based on the actual configuration of the
structure. These instantaneous target locations are stored in a
vector xg. Note that xg always has a size of 3n × 1 but does not
necessarily need the targets specified for each node. It is also
possible to provide a certain set of new location targets for the
“leading” nodes, while the target locations of the other nodes
remain unchanged. The “leading” nodes will then move towards
the new position while “pulling” the remaining nodes with them.

Mobility. A multibody system with f degrees of freedom has at
least f independent ways to deform. To investigate mobility, all
these possible motions will be evaluated both in isolation and in
combination with each other. The independent modes of motion
are the possible sets of variations in the node coordinates. For a
structure undergoing a 2D motion, the modes are shown in
Fig. 5b. Having defined the constraints in the form of equation
(4), we can find all the small variations which satisfy the con-
straints using the first derivative of (4) as:

J
U

Ψ

� �
¼ 0; ð7Þ

where J is the m × (3n+ k) Jacobian of the constraints and U and
Ψ are matrices with its null spaces. The Jacobian is calculated as

J ¼ ∂c=∂x1 ∂c=∂y1 ¼ ∂c=∂zn ∂c=∂λ1 ¼ ∂c=∂λk
� �

ð8Þ

Fig. 5 An illustration of the steps involved in the shape-morphing algorithm that is applied to a structure moving in 2D. The target of each node is to
reach the nearest bump on the surface as seen from the top view. The process iterates through steps a–d until the shape error derivative �E is below a pre-
defined threshold.
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while the null space can be subsequently determined using sin-
gular value decomposition (SVD). The columns of the Jacobian
represent small deviations that are combinations of coordinate
variations and can take place simultaneously. The separated
modes containing the admissible variations of x and λ are then
the null spaces:

U ¼ u1 u2 ¼ uf
� �

; ð9Þ

Ψ ¼ ψ1 ψ2 ¼ ψk

� �
: ð10Þ

Modal superposition. Modal superposition is used to move and
deform the structure to a desired configuration. In this way, the
nodes move along linear paths that are admissible by the con-
straints up to the first order (Fig. 5c). We selected and combined
the admissible motions stored in U by minimizing the distance
that the nodes travel towards their target xg. Then, at each step of
the motion, a change in the current configuration leads to the
creation of a new configuration according to the following rela-
tionship (Supplementary Note 1):

x� ¼ x þ UðUþðxg � xÞÞ; ð11Þ

where Uþ ¼ ðUTUÞ�1
UT is the left pseudo-inverse of U and both

U and U+ are evaluated in x. Note that the variations in λ are not
used in the modal superposition. Since the obtained information
regarding the motions is a linear approximation, multiple steps
are generally required to move to a new configuration while
satisfying all the applicable constraints.

Constraint satisfaction. In each step, the nodes make a small
linear movement with respect to their initial configuration that
tends to slightly violate the constraints of the structure. As the
number of steps increases, these initially negligible errors accu-
mulate, requiring corrective measures. In fact, nodes that are part
of bodies follow a curved path that cannot be described with a
linear movement. Therefore, in each step, a constraint satisfaction
step in the form of a Gauss-Newton algorithm is applied to the

coordinates ðxT� ; λT� Þ
T
to guarantee the constraints are satisfied up

to a permissible residual (Fig. 5d). These corrections lead to new
actual configurations after each step, which are given as (Sup-
plementary Note 1):

x

λ

� �
¼ x�

λ�

� �
� Jþc; ð12Þ

where Jþ ¼ JTðJJTÞ�1
is the right pseudo-inverse of the constraint

Jacobian J and c includes the constraint errors, both evaluated in

the configuration ðxT� ; λT� Þ
T
. The constraints with λ are affected as

well and need to be corrected too. These corrections are per-
formed in an iterative manner (within the overall iterative pro-
cess) to guarantee the satisfaction of the constraints up to a
permissible residual.

Case studies. Experiments are conducted to illustrate and validate
the usage of the approach. Simulations show how different
structures can be implemented and transformed into different
shapes. A reconstruction with a physical modular system shows
how the simulations compare to the physical world.

Simulations. For the simulations, the target shapes are point
clouds that are either created through the direct applications of
mathematical expressions or by converting a CAD drawing.
Shapes with constant (Gaussian) curvature are created with
straightforward functions. To create more irregular surfaces, we
used Fourier expansions. While the CAD drawing that is used
here as one of the sample shapes is hand-drawn, any real-world

physical objects could be handled similarly. The only additional
step would be some type of 3D scanning.

Two parameters were defined to run the simulations. In all
the simulations performed here, the characteristic length is
given by:

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

j¼1
rj0 �

1
n
∑
n

j¼1
rj0

� �
� rj0 �

1
n
∑
n

j¼1
rj0

� �s
; ð13Þ

where we use the initial structure node configurations, rj0, such
that S ¼ 1 at s= 0. Moreover, all the simulations stopped when
j�Ej<1 � 10�6.

Modular physical system. To illustrate and validate the capability
of the presented modeling approach, we designed a modular
system to recreate some of the various joint types discussed
here as physical models and demonstrate their physical kine-
matic motions (Fig. 6a–e). In the created modular system,
spheres represent nodes in kinematic systems. These spheres
were connected to different parts to create rigid bodies that
allowed for different types of motion variations. The rigid body
shapes can be combined with different joint types to form
shape-morphing structures (Fig. 6f). We used 3D printers to
fabricate our physical models (Supplementary Note 2). Differ-
ent pieces were combined to make different kinematic joints
and structures with different shape-morphing behaviors. The
spheres were printed using stereolithography (SLA) printers
(Form 3, Formlabs, United States; color resin). The spheres
were connected to each other to create links and bodies. Links
were printed using SLA (Formlabs gray resin) while ridged
shafts and bodies were printed using fused deposition modeling
(FDM) (Ultimaker 2+, Ultimaker, The Netherlands; silver
metallic filament). Different circular clamping pieces were
made with SLA (Formlabs tough 1500 resin) which could be
snapped around or into the ridges of the spheres. The shapes of
these clamps determine whether or not they can rotate and with
how many DoF. Different combinations of circular pieces create
either a fixed, spherical, hinge, universal, or hinge connection
around the sphere. The shafts are snapped into the other ends
of the circular pieces. Furthermore, the shafts are snapped into
tubes to create cylindrical or prismatic joints, where the pris-
matic joints make use of the ridges of the shafts to block any
rotations.

The modular system was first evaluated for a specific structure
whose morphing behavior is quite intuitive and was similarly
captured by both simulations and experiments. This allowed for a
comparison between the shape as predicted by the model and the
physically realized shape. The model yielded the final positions of
the nodes and the corresponding shape value. The physical
representation of the system was put into different shapes and its
node locations were recorded.

Target shapes. Target shapes were physically created for the
validation experiments as well (Ultimaker 2+, Ultimaker, The
Netherlands; green filament). They have an open structure that
provides the opportunity to capture the structure once it is placed
on or in the target shape. The three shapes are a circle, a
cylindrical surface, and an ellipsoidal enclosure, which were sized
to be compatible with the simulations (Supplementary Note 2).

Configuration capturing. As for capturing the positions of
individual nodes, we used a 3D optical scanner (Scan-in-a-Box-
FX, Open Technologies S.r.l., Italy) and extracted the coordi-
nates of the nodes by manually selecting the spheres from the
3D scanned point clouds. Then, the shape factor was calculated
and compared between our simulations and the physical model.
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The characteristic length for all cases (simulation and scanning)
was that of the simulation’s initial configuration as calculated
with (13).

Data availability
Data supporting the findings of this study are available from the corresponding author
upon reasonable request.

Code availability
Code supporting the findings of this study are available from the corresponding author
upon reasonable request.
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