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ABSTRACT
Experiments and human rider models were used to investigate
bicycle balance and steering using visuo/vestibular motion and pro-
prioceptive feedback taking into account sensory delays. An instru-
mented steer-by-wire bicycle designed and built at the TU Delft
bicycle laboratory was used to investigate rider responses with and
with reduced steering torque feedback. Steering responses and bicy-
clemotionsweremeasuredperturbingbalancewith impulsive forces
at the seat post. The rider was commanded to follow a straight lane
at unstable (2.6 and 3.7ms−1) and stable speeds (4.5 and 5.6 ms−1).
Bicycle speed was controlled with an electric drive and cruise con-
trol. Balance and steering responses could well be captured by linear
impulse response functions which were consistent across partici-
pants. The impulse response functions were used to develop neu-
romuscular control models capturing rider–bicycle interaction. The
Carvallo–Whipple bicycle model was extended with rider inertia and
an additional degree of freedom for the steer-by-wire system. Rider
behaviour was modelled as a balance and heading controller. This
controller used visuo/vestibular motion feedback of roll angle and
roll rate, heading angle and heading rate, and proprioceptive feed-
back of steering angle, velocity and torque. Results showed that the
rider model followed the necessary stability condition of steer into
the fall andwas capable of stabilising the bicycle. Sensory delays had
a negative effect on the model fit, which was resolved with an inter-
nalmodel andprediction algorithm.Amodelwithout steer angle and
steer velocity feedback could not well capture the human response
at the highest speeds and the absence of torque feedback had simi-
lar effects for all speeds, supporting the relevance of steer angle and
torque feedback in bicycle control.
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1. Introduction

The balance and control of bicycles in motion is a skill that the majority of the population
acquires since early childhood. However the way humans control and balance bicycles is
only partially understood [1,2]. From the first appearance of the modern bicycle in the
late 1880s until now, dynamic models of uncontrolled bicycles have provided fundamental
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insights into bicycle stability in relation to speed and geometry [3,4]. However, additional
knowledge on human control is required to design safer bicycles and to assess new safety
systems (e.g. steer assist functionalities). The latter can greatly improve bicycle safety and
reduce single-bicycle accidents [5] particularly important for elderly cyclists [6].

Research in the field of cybernetics started in the 1950s to advance aircraft technol-
ogy and understand pilot control. McRuer and Krendel [7] were amongst the first to
model the human operator as a servo system with time delay. The so called ‘McRuer cross
over model’ was later extended to the ‘McRuer precision model’ capturing neuromuscular
dynamics and delays [8]. Results showed that for a range of controlled system dynamics,
humans were able to realise a closed loop response resembling a first-order system. Among
the first researchers who focused on the manual control of bicycles were Van Lunteren
et al. [9]. They used a stationary bicycle simulator and system identification techniques to
identify the parameters of a proportional-integral-derivative (PID) rider controller with
delay. However, their bicycle simulator had no visual display and the rider model has not
been experimentally validated. Weir [10] developed a cross-over model for Sharp’s [11]
motorcycle model. He concluded that a simple linear steer torque controller that takes into
account the lean angle is sufficient for balancing a motorcycle in motion. Eaton [12] later
conducted experiments to validate these models [10,11]. Despite the fact that he excluded
the lean torque and used only the lean angle stabilisation loop results were promising. Con-
trol parameters could be estimated with low uncertainty and steer torque responses were
fitted well. Jason Moore [13] studied rider control during simple bicycle maneuvers. He
constructed an instrumented bicycle measuring the applied steer torque and conducted
a series of lateral perturbation experiments on a treadmill and on a pavilion floor. This
extensive dataset was used to identify both the plant and the rider model. Some of the
methods and modelling approaches that he utilised in his thesis were also adopted herein.
Hess et al. [14] introduced task independent handling quality metrics for bicycle control.
Using these metrics, they developed a rider model with five gains, two second-order fil-
ters, and a preview time. Soudbakhsh et al. [15] mounted a stationary bicycle on a motion
platform and applied lateral sweep perturbations to capture the rider’s responses. Their
conclusion was that it is impossible to stabilise the stationary bicycle only with upper body
movements, whereas with additional steering control riders can balance the bicycle. Chu
et al. [16] measured the steering and roll angle of a bicycle and used a model predictive
controller as a rider model applying steering and leaning torques. Wang et al. [17] con-
ducted experiments in order to analyse the stability and control of a rider–bicycle system
and developed a rider model controlling body lean torque. Building upon [13] Schwab
et al. [18]modelled the bicycle rider using lateral force perturbation experiments to explore
the potential feedback of sensory cues during the bicycle balancing task. Even though the
rider control model seemed to mimic human control in a natural way, there were limita-
tions in this study: The first limitation was that experiments were conducted on a narrow
treadmill and, as reported, this may have created bias in the control behaviour. The second
limitation was that sensory delays (e.g. visual, vestibular and proprioceptive) were omitted.
A third limitation was that steering torque feedback was not considered.

In the present study, we build upon the work by Schwab et al. [18] including delays in
the sensory paths and exploring the role of steering torque feedback. We performed new
experiments on a wide bicycle lane instead of a treadmill, using the experimental steer-
by-wire bicycle developed by Dialynas et al. [19]. We reconfigure the parameters of the
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Carvallo–Whipple bicycle model [3] to the physical properties of the steer-by-bicycle. We
use the gathered data to develop a novel rider control model, which is not only able to take
into account sensory delays but also to adapt to different steering dynamics to evaluate the
role of steering torque feedback in rider control.

This study has three main objectives; the first is to design a rider control model which
takes into account steer torque feedback and sensory delays. We include a predictor model,
as frequently employed in humanmotor control studies to compensate sensory delays, and
to estimate the current system state [20–23]. The second is to examine the ability of humans
to adapt to altered steering dynamics even when feedback is intermittent and delayed. The
third is to evaluate the effect of handlebar torque and position feedback. The paper is organ-
ised as follows: First, the experimental set-up and experimental procedure are presented.
Next, themethods and results are presented. The article ends with a discussion and conclu-
sion highlighting the main findings. A preliminary analysis of this research was published
as an MSc thesis [24]. All data presented herein have been reanalysed and results were
extended.

2. Methods

2.1. Description of the experimental set-up

At TU Delft we designed and built a steer-by-wire bicycle [19] equipped with multiple
sensors measuring most bicycle states and rider control inputs required for rider model
identification (see Figure 1(a)). A pulling ropemechanismwith a force transducer in series
was used to manually apply lateral impulsive forces at the seat post (see Figure 1(b)). The
bicycle is equipped with rear wheel hub motor and a cruise control system, so the subjects
did not need to pedal to maintain a constant speed. Measurements of the inertial measure-
ment unit (IMU), steering angle encoder, torque sensor and rope force transducer were
logged at 1000Hz. Steering angle δ was directly measured from the absolute encoder of
the upper front assembly, while the roll angle φ was estimated from the measured roll rate
φ̇ as described by Sanjurjo et al. [25].

2.2. Description of the steer-by-wire controller

The steer-by-wire system enables flexible adjustment of steering actions and haptic feed-
back (steering torque). In this paper we mimic normal steering motion, where the fork
rotation is approximately equal to the handlebar rotation. We manipulate steering torque,
where the controller was programmed to approximate: 1) normal steering torque (haptics
on) and 2) reduced steering torque (haptics off) isolating the rider from torques result-
ing from tyre to road interaction. The applied controller is described by Dialynas et al.
[19] and herewe adopted the parameters (KPH = 0.9,KPF = 2,KDH = 0.012,KDF = 0.025
Nms/rad in normal steering with KPH and KDH = 0) in the haptics off condition.

2.3. Experimental procedure

Eighteen males and two females (age = 26 ± 2 years) volunteered in this study. To assure
safety, all participants were requested to wear protective equipment, which includes a
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Figure 1. Steer-by-wire bicycle (top) and experimental conditions (bottom)where the experiment coor-
dinator (bottom) cycling next to the steer-by-wire bicycle applies an impulsive lateral force with a
rope.

standards-approved bike helmet, knee and elbow pads. All subjects gave informed consent
according to the guidelines of the TU Delft human research ethics committee. They
reported that they did not experience any kind of pain or injury in the year before the
experiments. Themeanweight of the participants (82.1± 6.4 kg)was close to the European
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Figure 2. Example measurements of the lateral disturbance forcew, rider applied steer torque Tδ , steer
angle δ, roll angle φ and headingψ at a forward velocity of 2.81ms−1 (first 40 seconds).

population [26], whereas the height (181 ± 7 cm) was close to the mean height of young
European men [27].

Each experimental trial consisted of four different speeds (i.e. 2.6, 3.7, 4.5, 5.6 ms−1)
covering both the stable and the unstable forward speed range. Two individual trials were
performed in random order for every speed. In one trial steering feedback was enabled
(haptics on), whereas in the other trial steering feedback was reduced. The roll-steer
dynamics were decoupled, hence the steering torque feedback was due to the inertia of
the handlebars and not due to the front wheel dynamics (haptics off). Every trial had a
duration of approximately 60 seconds, with on average a total of 12 lateral perturbations.
Example data measured for one subject at the lowest speed is presented in Figure 2.

All experiments were performed at a straight cycling path at the Heertjeslaan on the TU
Delft campus during the summer of 2019. The subjects were requested to ride the steer-
by-wire bicycle at all four speeds while being laterally perturbed with impulsive forces at
the seat post. An additional bicycle was used by the experiment coordinator to cycle next
to the instrumented steer-by-wire bicycle and perturb the subject (see Figure 1(b)). A set-
up which allowed both push and pulls was initially tested but the pushes were subject to
inconsistencies. After inspecting the data of the pilot runs, it was observed that unilateral
disturbances did not affect the predictability of the perturbation, as the responses of the
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Figure 3. High level overview of the rider–bicycle model.

subjects were similar. For this reason, the unilateral approach was chosen. To avoid any
feedforward control behaviour (e.g. seeing the coordinator preparing to pull the rope) all
subjects were asked to focus on the road ahead.

3. Systemmodel

The present study builds upon the bicycle and rider model described by Schwab et al. [18]
extending the rider model with neuromuscular dynamics and a predictor dealing with
sensory delays (see Figure 3).

3.1. Bicyclemodel

We adopted the Carvallo–Whipple bicycle model [3] which consists of four rigid bodies:
a rear frame B which includes the rider as a rigid mass with no hands on the handlebars, a
front frame H which consists of the handlebar and fork assembly and a front wheel F (see
Figure 10 in Appendix II – Bicycle and neuromuscular dynamics models). The bodies are
connected with in total three revolute joints, one for each wheel and one for the steering
axis connecting the rear and front frame. The contact between the wheels and the road sur-
face is modelled by holonomic constraints in the normal direction and by non-holonomic
constraints in the longitudinal and lateral directions with zero longitudinal and lateral slip.
The resulting bicycle model has three velocity degrees-of-freedom, the forward speed v,
the rear frame roll rate φ̇ and the steering rate δ̇.
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Table 1. Sensory motor delays.

Bicycle states Delay (ms)

δ 25
δ̇ 25
Tδ 25
φ 200
ψ 200
φ̇ 50

3.2. Rider control model

The rider inertia was integrated in the inertia of the bicycle rear frame B assuming a rigid
connection to the saddle. In this paper we thereby ignore the contribution of body lean
to balancing and steering (see the Section 6.1 and Appendix IV – Effects of rider body
coupling analysed using a double pendulummodel). The rider control model architecture
consists of four main blocks in series (i.e. the sensory delay, the predictor, the linear gain
controller and the neuromuscular dynamics) that represent human sensing, reasoning and
actuation. The output states attributed to the proprioceptive, visual and vestibular system
were delayed taking into account perception and neural delays presented in Table 1. For
steering angle, steering velocity (muscle spindles) and steer torque (golgi tendon organs)
delays were based on studies by Van der Helm et al. [28] and De Vlugt et al. [29] using sim-
ilar linear second-order models to capture neuromuscular arm dynamics. For the roll and
heading (yaw) angles we assumed visual perception with delays fromKawakami et al. [30],
whereas for the roll rate, we assumed vestibular perception with a delay according to
Barnett et al. [31].

A prediction algorithm which includes an internal model of the bicycle and neuromus-
cular dynamics was used to simulate how the central nervous deals with sensory delays
and estimates the current state integrating applied control inputs. The predicted states
were fed through the gain block which includes six free parameters (one for each bicy-
cle state), estimated fitting the experimental data as described in the section parameter
estimation. The produced neural control signal was filtered through the neuromuscular
dynamics which gives as output the rider steer torque Tδ . The high level overview of the
obtained rider–bicycle system can be seen in Figure 3.

3.3. Neuromuscular dynamics

To simulate the limitations of the rider’s arm responses a linear second-order neu-
romuscular model was used similar to the approach adopted by Jason Moore in his
PhD thesis [13]. The model uses activation dynamics estimated for the shoulder joint
[32,33]. The model acts as a critically damped second-order filter with a cut-off frequency
ωc =2.17 · 2π rads−1 and damping coefficient ζ = √

1/2 generating the steer torque Tδ
in reponse to the neural input a (see Appendix II – Bicycle and neuromuscular dynamics
models).
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3.4. Sensory delay reafferent optimal predictor (SDROP)

To compensate the effect of sensory delays and achieve an adequate rider control perfor-
mance, we explored the use of internal predictive models. Several authors have proposed
that the cerebellum functions as a predictor of bodymotion.Miall et al. [34] suggested that
the cerebellum may hold at least two separate Smith Predictors. The Smith predictor is a
basic prediction scheme in control theory [35]. The Smith predictor compensates for time
delays using a forwardmodel of the controlled dynamics and an internal model of the sen-
sory delays. The forward model utilises an efferent signal being the applied neural control
input a. The comparison between prediction andmeasurement simulates the human’s abil-
ity to distinguish between reafference and exafference. Unfortunately, the Smith predictor
does not work for unstable open loop systems [35] such as the Carvallo–Whipple bicycle
model [3]. As a consequence, adjustments were made to the Smith predictor. The forward
model was replaced by a discrete optimal predictor (DOP) whichwas adapted to work with
different time delays Table 1. The more advanced sensory delay reafferent optimal predic-
tor (SDROP) used additional delays to synchronise the input states and an internal model
to forward the bicycle states in time. A comparison between the conventional DOP and
the SDROP is presented in Figure 12 (a), (b) of Appendix III – Predictor comparison. The
SDROP required full state feedback, but in our extended bicyclemodel only 6 out of 7 states
are sensed. The missing Ṫδ was estimated by the predictor. To detect disturbance effects,
which are not captured by the efference copy, we utilised the same correction principle as
used in the Smith predictor [35]. The low level overview of the rider controller and bicycle
plant can be seen in Figure 4.

4. System identification

The rider control system identification used a combination of black box and gray box
models to estimate the control gains employed by the rider. Starting with the basic
measurements, the identification was performed in six steps:

(1) Data preparation: There were two datasets available for our analysis (haptics on and
haptics off). An in depth comparison of these conditions is presented by Dialynas
et al. [36]. The steering angle power spectrumwas analogouswith no significant effects
on the power spectral centroid representing the frequency where most of the power
is concentrated. Almost identical impulse response functions (IRFs) were reported.
In haptics off the steering response was delayed around 20 ms for the three high-
est speeds (p = 0.0021 for 3.7m/s, p = 0.0001 for 4.5m/s, p = 0.0002 for 5.6m/s)
whereas no significant effect was found at 2.6 m/s. Given these minor experimental
effects of haptic information, only the haptics on dataset was selected for modelling,
and experimental trends will be adressed in the discussion. This dataset was split into
two data clusters. The cluster with the first 10 subjects was used for ‘identification’
of the controller gains, and the cluster with the last 10 subjects for ‘validation’ of the
model.

(2) Black box identification: To produce the filtered impulse response (IRF), finite
impulse response (FIR) models were fitted to the four output states y in response to
the lateral force w for each run.
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Figure 4. Low level overview of the rider–bicycle system. Matrices A∗, B∗, H∗
d are the discretisedmatri-

ces of the extended plant dynamics, di is the amount of delay in times steps per sensory channel and
dmax the maximum value of those. Matrices A∗

m, B∗
m express the dynamics of the internal model of the

process. ŷp, ŷc symbolise the undelayed and delayed estimates of the output states, respectively. e is the
error between the predicted and delayed states (Smith correction) and K is a pure gain block containing
all six gains. a represents the neural signal send to the rider armmuscles.

(3) Filtering: The IRFs hδ (t), hφ (t), hψ (t), hTδ (t) were filtered using a zero-phase low
pass filter with a cut-off frequency of 10 Hz.

(4) Median response: The individual responses of the ‘identification’ and ‘validation’
datasets were averaged in order to produce two mean IRFs. Each individual subject
response was compared with the mean. The subject with the best fit (highest VAF) for
all runs was selected as the median rider for both datasets. We could also have used
the two mean raw measurements to identify the median rider for the two aforemen-
tioned datasets but this was avoided due to the fact there was too much unwanted
information in the experiments which was not directly attributed to the impulse per-
turbation. All results described herein were based on the median rider response IRFs,
since intersubject variability was low at ±8%.

(5) Black box filtering: The IRFs of the median subject were convolved with the
measured disturbances of each run to produce the non-parametric output states
ỹδ(t), ỹφ(t), ỹψ(t), ỹTδ(t) ỹT.

(6) Gray box identification: The rider control model with a maximum of six free param-
eters (one gain for each bicycle state feedback loop plus one for the steer torque) was
fitted to the non parametric outputs ỹδ , ỹψ ỹ given the measured external input w.

These individual steps are explained in detail in the following sections.
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4.1. Black boxmodel

To remove unwanted disturbances and noise, the measured steering angle δ, roll angle
φ, heading angle ψ and steer torque Tδ signals were approximated by a FIR model. The
impulse response function h(t) was convolved with the external input w(t) to produce the
filtered output response ỹ(t). The output data represent the input to output relationship
corresponding to either hδ(t), hφ(t), hψ (t), hTδ (t). In finite discrete time; t = 1, 2, 3. . . ., N
the measured output y(t) is given by,

y(t) = ỹ(t)+ v(t) (1)

ỹ(t) =
m∑
k=1

h(k)w(t − k) (2)

where m is the sample length of the impulse response function and v(t) is the remnant
caused by the unwanted disturbances. Experimenting with different finite impulse lengths,
the oscillations were found to die out afterm = 798 samples, which corresponds to a finite
response length of 3.08 seconds. In state space form Equations (1), (2) are expressed as,

y = Wh + v (3)

where W is the matrix containing time shifted versions of the input signal.

W =

⎡
⎢⎢⎢⎢⎢⎣

w(0) 0 0 . . . 0
w(1) w(0) 0 . . . 0
w(2) w(1) w(0) . . . 0
...

...
...

. . . 0
w(N − 1) w(N − 2) w(N − 3) . . . w(N − N)

⎤
⎥⎥⎥⎥⎥⎦

(4)

Since Equation (3) is linear in the coefficients a unique solution can be found by the least
squares method.

h =
(
WTW

)−1
WTy (5)

The estimated IRFs were further filtered using a eight-order Butterworth filter with cut-off
frequency of 10 Hz. All input signals were convolved with h in order to remove noise and
produce an estimate of the output signals ỹ. An example of obtained responses of the mean
and median rider for the lowest measured forward velocity is presented in Figure 5.

4.2. Gray boxmodel

The rider control model includes six unknown linear feedback control gains. In state space
the gain block of Figure 4 can be expressed as a vector of the following form,K= [Kφ̇, Kδ̇,
Kφ , Kδ , Kψ , KTδ ]T.

As feedback is defined as negative, the control input is given by:

a = −Kŷc (6)

where ŷc is the output of the predictor (see Figure 3).
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Figure 5. IRFs for the roll angle φ, steering angle δ, heading angleψ and steer torque Tδ for a forward
velocity of v= 2.8ms−1, shade = SD of mean over participants (haptics on).

4.3. Parameter estimation

The gains of the rider control model were estimated by fitting the model outputs into the
convolved filtered IRFs. This was achieved minimising the following cost function:

VN(K) = 1
N

N∑
t=1

⎡
⎢⎣0.8

(
ŷδ(t,K)− ỹδ(t)

)2
(
yδ

)2

+0.16
(
ŷψ(t,K)− ỹψ(t)

)2
(
yψ

)2 + 0.04
(
ŷTδ (t,K)

)2
(
yTδ

)2
⎤
⎥⎦ (7)

where K is a vector containing all free feedback control gains and ŷδ , ŷψ and ỹδ(t), ỹψ(t),
are the simulated and non-parametric outputs, respectively. The constant scaling factors
Èşδ , Èşψand ÈşTδ are the absolute allowable magnitude limits, which are 0.4 rad for the
two angles and 10 Nm for the steering torque.

The first two terms of the cost function are trying to match the steering and heading
responses of the parametric model with the non-parametric model. The third term min-
imises the magnitude of input torque in order to optimise fitting, while minimising the
control effort. Omission of this term led to oscillatory steering angles and unrealistic input
torques, due to the double differentiation to get from position to torque. Roll responses
were not fitted due to systematic deviations between the predicted and actual responses
(see Section 6.1 in the 6). All weights of the cost function were chosen heuristically, the
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weight ratio of the heading and steer error was selected as 1:5, since this gave the best fit.
For optimisation a genetic algorithm (fitness limit = 0.03, crossover fraction = 0.85, and
population size = 10 times bigger the size of the parameter length) was used followed by
a gradient descend algorithm to estimate the global minimum of the gains.

Most estimated gains of the rider model were negative, producing torques opposed to
the state direction. Due to the fact that the rider was expected to act like a restoring steering
stabiliserwith finite stiffness and damping properties, all gains associated to the armmuscle
spindles (Kδ , Kδ̇) were constrained to be only positive. At the same time, the heading and
roll gains (Kψ , Kφ) were constrained between −250 and 250 kgm2 s−1, because if they
were left unconstrained they drove the gain vector to unrealistic values without noticeable
improvement in fitting performance.

4.4. Performancemetrics

As metric of model validity the variance accounted for between the parametric and non-
parametric output was calculated as,

VAFd(K) = 1 −
N∑
t=1

(̃
yd(t)− ŷd(t,K)

)2
/

N∑
t=1

(̃
yd(t)2

)
(8)

with d being any of the roll φ, steer δ and heading ψ outputs. To quantify the uncertainty
of each parameter the covariance matrix was first estimated as,

covij(K̂) = VN(K̂)Hij(K̂)−1 (9)

where the hessian matrixH was calculated by the gradient descend algorithm as,

H(K̂) = Hij(K̂) = ∂2VN

∂Ki∂Kj
(10)

where K̂ in both Equations (9), (10) stands for the closest estimate to the true parameter
vector K∗, that produces the true global minimum. To obtain comparable results between
the estimated parameters the diagonal elements of the covariance matrix covij(K̂) were
normalised with the respective parameter estimate. The normalised coefficient of variation
for each parameter was calculated as,

CVi =

√√√√σ 2
K̂i

K̂2
i

(11)

where σ 2
K̂i
stands for the diagonal elements in this equation.

5. Results

Three rider models with increasing complexity are presented and discussed in this
Section ( 1) A zero delay (ZD) model which ignores sensory delays and hence the bicycle
states are direct inputs to the PureGain block (see Figure 3), (2) amodelwith sensory delays
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(SD) (see Table 1) but without predictor, and (3) amodel with sensory delays and reafferent
optimal predictor (SDROP). The performance of all models is assessed for three different
configurations. In the first and presumably most realistic configuration (with Tδ feedback)
the rider has the torque feedback loop connected and the plant dynamics approximate
a normal bicycle. In the second configuration (without Tδ feedback) the internal torque
feedback loop of the rider is disconnected (hence there are 5 instead of 6 feedback param-
eters). This will show in how far a human control model without steering torque feedback
can explain normal human behaviour. In the third configuration (reducedTδ feedback) the
steering dynamics change to steer-by-wire (haptics off). This means that the plant approx-
imates a bicycle with decoupled roll-steer dynamics, hence the rider receives only steering
torque feedback due to the inertia of the handlebars and not due to the front wheel dynam-
ics. This will show in how far a human control model with reduced steering torque feedback
information can explain normal human behaviour.

Results showed that all rider models followed the necessary stability condition of steer
into the fall and were capable of stabilising the bicycle. This is illustrated in Figure 6 com-
paring all models and configurations for the lowest and highest measured speeds. Rider
model parameters and the model fit (VAF) for all models and configurations are reported
in detail in Tables 2–4. Figure 7 illustrates the model fit for the three rider models for the
configuration with torque feedback. All rider models provide reasonable or good fits of the
steering and heading angle. The roll angle is not so well predicted where the magnitude
of the roll angle remains two to three times smaller than the actual non-parametric out-
put, as will be further addressed in Section 6.1 in the 6. The model without sensory delays
(ZD) provides a good overall fit, while the fit degraded introducing sensory delays (SD)
and improved with the advanced SDROP model where the Smith predictor compensates
for sensory delays. Rider control parameters vary strongly with driving speed for allmodels
and configurations as illustrated in Figure 8. The hypothesis was that the absolute value of
theKψ will increase with speed andKδ will decrease as we also noticed in our analysis. Our
expectations were based on subjective observations from other naturalistic bicycle studies.
As a conclusion we believe that the rider uses more the relevant position of the handlebars
(proprioceptive cues) at lower speeds. At higher speeds the heading of the bicycle (visual
cues) plays a more significant role when the subject is laterally perturbed.

5.1. Zero delay (ZD)

The results of the zero delay model for all configurations and speed levels are presented
in Table 2. A VAF of over 90% was observed for both the steer angle and heading, while
for the roll angle the VAF is between 77–90% depending on speed and configuration. The
CV indicates moderate dispersion for most gains and speed levels, except for the w/o Tδ
configuration where the uncertainty of Kδ is much higher than the rest of the gains. For
all speed levels VAFδ drops the most in the w/o Tδ feedback configuration. The steering
angle and torque signals become substantially more oscillatory, although roll stabilisation
does not seem to be affected. With reduced Tδ feedback, VAFδ drops less than 3% and the
degradation in the steering angle, torque and roll signals is small. All model predictions
lag behind compared to the non-parametric responses. For the roll angle the predicted
magnitude is two to three times smaller than the measured output.
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Figure 6. Steering angle δ, roll angle φ and steering torque Tδ of the three parametric rider models
(ZD, SD, SDROP) compared to the Non-parametric model, for all torque feedback configurations, for the
lowest speed (top) and highest speed (bottom).
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Figure 7. Variance accounted for (VAF) for rider models with zero delay (ZD-left), with sensory delay
(SD, middle), and sensory delay reafferent optimal predictor (SDROP-right). In all cases the VAF is
shown averaged over 4 speeds for rider models with torque feedback. Detailed results are presented
in Tables 2–4.

Figure 8. Rider control parameters as a function of riding speed for the most advanced SDROP model
with force feedback, bars indicate the coefficient of variance (CV) indicating the parameter estimation
accuracy. Control parameters for all rider models are in Tables 2–4.

5.2. With sensory delay (SD)

The results of the sensory delay model for all configurations and speed levels are presented
in Table 3. The model fit degraded by the introduction of sensory delays. The model with
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Table 2. Results of the zero delay (ZD)model for themedian rider for all configurations and speed levels.

Haptic On Haptic Off

Bicycle model with Tδ feedback w/o Tδ feedback reduced Tδ feedback

Speed Rider model Value CV (10−4) Value CV (10−4) Value CV (10−4)

Kφ̇ −77.17 114.86 −22.46 29.77 −115.36 213.52
2.8ms−1 Kδ̇ 2.26 73.57 2.58 18.93 8.76 187.30

Kφ −164.88 132.25 −24.50 73.14 −248.24 217.05
Kδ 32.75 150.14 3.76 140.96 29.67 215.07
Kψ −63.22 133.29 −9.85 53.71 −93.44 223.02
KTδ 3.51 176.20 – – 7.53 223.83
VAFφ 77.80 82.79 78.37
VAFδ 98.34 79.19 98.20
VAFψ 93.46 93.51 93.74
Kφ̇ −109.94 146.98 −21.30 35.99 −78.28 61.00

3.6ms−1 Kδ̇ 8.22 139.00 3.30 24.78 9.09 51.11
Kφ −248.47 147.39 −34.64 71.54 −229.14 84.40
Kδ 50.78 147.72 6.48 130.57 53.16 92.96
Kψ −132.13 152.08 −17.74 61.92 −103.75 74.49
KTδ 4.52 167.24 – – 6.89 64.17
VAFφ 79.92 85.93 80.89
VAFδ 98.83 86.40 97.08
VAFψ 95.33 97.95 95.15
Kφ̇ −92.50 117.34 −27.29 46.40 −102.63 40.87

4.7ms−1 Kδ̇ 4.81 183.05 4.25 41.56 11.24 28.38
Kφ −183.03 135.64 −38.17 76.43 −249.74 74.10
Kδ 22.57 237.51 2.65 591.87 63.36 88.33
Kψ −165.42 126.89 −33.78 63.74 −188.67 58.81
KTδ 3.42 174.23 – – 8.98 13.88
VAFφ 77.03 83.06 78.60
VAFδ 97.57 80.27 95.57
VAFψ 91.41 97.03 92.48
Kφ̇ −83.90 117.61 −31.12 43.99 −76.30 47.12

5.7ms−1 Kδ̇ 5.83 142.87 5.58 40.62 10.91 30.23
Kφ −166.08 127.89 −43.64 67.14 −208.33 83.09
Kδ 14.85 98.10 1.14 1836.39 79.44 75.47
Kψ −186.77 128.56 −49.82 52.31 −176.96 69.82
KTδ 3.24 185.07 – – 8.45 29.67
VAFφ 79.17 84.03 80.30
VAFδ 97.51 84.09 94.71
VAFψ 90.97 96.41 91.56

Notes: Haptic on/offdifferentiates based on the dynamics of the bicyclemodel, while ‘with orw/o Tδ feedback’ differentiates
based on the structure of the rider control model. The values of the gains are presented together with their corresponding
uncertainty level (CV). The VAFbetween the parametric andnon-parametric signal outputs is also presented in percentage
% to assess fitting performance. The derivative gains Kφ̇ , Kδ̇ are measured in kgm2 s−1, the proportional gains Kφ , Kδ , Kψ
are measured in kgm2 s−2 and the torque feedback gain KTδ is dimensionless.

normal steering torque feedback provided a reasonable fit butVAFδ dropped, in particular
for higher speeds (from 97.5% to 78% at 5.7ms−1). The CV indicates moderate dispersion
for most gains and speed levels, except for the steer angle gain Kδ , where a higher disper-
sion was observed for the highest speeds. In contrast to the previous model a larger drop
in the VAFs of all signals was observed between the first two configurations (with and w/o
Tδ feedback), and an equally significant further drop with reduced Tδ feedback. The addi-
tional delay was also evident in the predicted signals (see Figure 6). The magnitude of the
roll angle remains two to three times smaller than the actual non-parametric output.



VEHICLE SYSTEM DYNAMICS 17

Table 3. Results of the with sensory delay (SD) model for the median rider for all configurations and
speed levels.

Haptic On Haptic Off

Bicycle model with Tδ feedback w/o Tδ feedback reduced Tδ feedback

Speed Rider model Value CV (10−4) Value CV (10−4) Value CV (10−4)

Kφ̇ −68.53 38.72 −14.93 37.52 −28.19 35.15
2.8ms−1 Kδ̇ 2.09 110.32 2.30 32.17 2.65 13.18

Kφ −146.29 72.07 −16.98 92.51 −79.20 78.41
Kδ 22.18 95.38 4.62 103.75 10.51 93.36
Kψ −40.34 56.18 −3.78 116.84 −14.53 67.08
KTδ 3.52 64.80 – – 2.59 29.48
VAFφ 81.15 69.61 80.01
VAFδ 93.43 23.34 66.84
VAFψ 93.78 69.67 83.30
Kφ̇ −51.02 56.62 −15.40 55.90 −21.25 51.31

3.6ms−1 Kδ̇ 2.50 170.45 2.81 50.20 2.79 17.72
Kφ −120.51 85.28 −22.82 102.83 −76.41 90.89
Kδ 16.58 153.27 3.94 243.76 17.14 84.92
Kψ −43.06 79.41 −7.37 147.32 −13.30 103.52
KTδ 3.42 62.79 – – 3.09 21.20
VAFφ 82.85 79.48 73.14
VAFδ 91.63 53.29 52.83
VAFψ 95.10 84.88 71.58
Kφ̇ −51.78 64.60 −19.26 349.70 −14.88 55.92

4.7ms−1 Kδ̇ 2.75 160.68 4.42 438.96 3.04 20.62
Kφ −136.22 105.15 −27.02 111.78 −48.91 115.90
Kδ 3.21 1156.00 0.01 492609.67 16.01 99.26
Kψ −64.43 87.60 −14.29 412.99 −10.82 119.48
KTδ 3.70 63.91 – – 2.61 30.62
VAFφ 77.86 71.14 63.73
VAFδ 81.63 36.19 15.61
VAFψ 90.32 80.57 55.71
Kφ̇ −38.58 136.91 −19.65 110.85 −10.10 62.29

5.7ms−1 Kδ̇ 1.13 2085.75 5.42 128.32 3.08 21.38
Kφ −120.59 120.57 −33.34 117.63 −30.95 133.76
Kδ 0.00 3969013.40 0.01 280859.33 18.46 79.69
Kψ −60.65 95.03 −19.20 183.00 −8.17 131.56
KTδ 4.27 191.50 – – 2.58 26.58
VAFφ 73.65 70.08 49.58
VAFδ 77.99 40.64 –
VAFψ 84.32 79.50 39.90

Notes: Haptic on/offdifferentiates based on the dynamics of the bicyclemodel, while ‘with orw/o Tδ feedback’ differentiates
based on the structure of the rider control model. The values of the gains are presented together with their corresponding
uncertainty level (CV). The variance accounted for (VAF) between the parametric and non-parametric signal outputs is
also presented in percentage % to assess fitting performance. The derivative gains Kφ̇ , Kδ̇ are measured in kgm2 s−1, the

proportional gains Kφ , Kδ , Kψ are measured in kgm2 s−2 and the torque feedback gain KTδ is dimensionless.

5.3. Sensory delay reafferent optimal predictor (SDROP )

The results of the SDROP model for all configurations and speed levels are presented in
Table 4. Despite the fact that significant delays are introduced into the sensory paths Table 1
the internal model of the predictor compensates for system latencies and achieves a good
performance for all three configurations. AVAF above 90%was observed for both the steer
angle and heading, while for the roll angle VAF is between 80–86% depending on speed
and configuration. The CV indicates a stable level of dispersion for most gains and speed
levels. Only for the configuration with Tδ feedback a higher dispersion was observed for
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Table 4. Results for the SDROP model for the median rider for all configurations and speed levels.

Haptics On Haptics Off

Bicycle model with Tδ feedback w/o Tδ feedback reduced Tδ feedback

Speed Rider model Value CV (10−4) Value CV (10−4) Value CV (10−4)

Kφ̇ −111.62 152.10 −22.44 28.45 −123.53 27.90
2.8ms−1 Kδ̇ 1.80 234.11 2.62 14.59 8.62 35.62

Kφ −248.74 151.15 −24.17 84.44 −239.60 18.65
Kδ 45.60 150.24 4.05 147.97 22.82 90.52
Kψ −94.18 156.50 −9.03 65.63 −91.07 14.16
KTδ 4.66 170.99 – – 7.93 27.78
VAFφ 78.80 82.33 80.67
VAFδ 98.21 68.99 97.59
VAFψ 94.04 90.77 94.95
Kφ̇ −94.83 125.80 −22.08 33.58 −97.15 115.92

3.6ms−1 Kδ̇ 3.33 404.51 3.34 17.01 9.68 75.60
Kφ −249.80 64.02 −37.61 80.02 −249.84 214.29
Kδ 58.12 63.15 7.44 140.22 50.23 247.35
Kψ −125.36 97.89 −17.72 66.95 −119.20 160.68
KTδ 4.24 91.84 – – 7.57 95.88
VAFφ 81.66 86.50 83.35
VAFδ 97.33 79.27 96.15
VAFψ 96.13 96.97 96.80
Kφ̇ −120.38 145.55 −27.59 56.00 −164.59 112.31

4.7ms−1 Kδ̇ 0.24 4252.46 4.15 59.72 22.39 106.46
Kφ −249.40 133.42 −37.98 90.28 −249.82 107.93
Kδ 29.49 210.73 2.67 665.03 14.70 649.60
Kψ −222.31 143.06 −31.24 81.57 −209.12 111.47
KTδ 5.75 141.98 – – 13.87 78.12
VAFφ 79.21 81.88 80.97
VAFδ 97.07 70.43 90.44
VAFψ 92.97 95.43 95.93
Kφ̇ −83.24 24.27 −27.53 46.08 −146.38 35.81

5.7ms−1 Kδ̇ 0.65 1394.64 4.31 43.06 28.45 31.76
Kφ −169.81 13.03 −44.71 92.82 −246.85 116.80
Kδ 8.29 278.33 4.13 493.77 29.42 401.88
Kψ −185.36 6.72 −43.34 72.02 −211.40 56.88
KTδ 4.49 72.85 – – 15.81 10.28
VAFφ 82.35 85.06 80.57
VAFδ 96.12 75.40 87.27
VAFψ 93.83 97.03 93.59

Notes: Haptic on/offdifferentiates based on the dynamics of the bicyclemodel, while ‘with orw/o Tδ feedback’ differentiates
based on the structure of the rider control model. The values of the gains are presented together with their corresponding
uncertainty level (CV). The variance accounted for (VAF) between the parametric and non-parametric signal outputs is
also presented in percentage % to assess fitting performance. The derivative gains Kφ , Kδ are measured in kgm2 s−1, the
proportional gains Kφ , Kδ , Kψ are measured in kgm2 s−2 and the torque feedback gain KTδ is dimensionless.

the steer rate Kδ̇ and steer angle gains Kδ . A drop in V AFδ and an oscillatory behaviour
similar to the ZD model was observed in the w/o Tδ and reduced Tδ configurations. Also
for this model the predicted roll angle magnitude remains two to three times smaller than
the actual non-parametric output.

5.4. Testing and validation

The SDROP prediction capabilities are also tested without the Smith correction control
loop, testing the performance of the simplerDOP (see Figure 12 ofAppendix III – Predictor
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comparison). To simplify the comparison the gain estimates of the ZD model are adopted
for both SDROP and DOP simulations. A comparison between the true roll rate and pre-
dicted roll rate of the DOP and SDROP model without any internal model discrepancies
is presented in Figure 9(a). The state estimate of the SDROP model is closest to the true
state, which is expected since the Smith loop corrects the error between the state estimates
by comparing its predicted states with the direct outputs of the bicycle model. However,
the main advantage of the Smith correction loop is the ability to correct for internal model
imperfections, which come along with changes in the bicycle plant dynamics.

To examine this ability the forward model of the SDROP is replaced with that of the
configuration with reduced Tδ feedback. This is based on the assumption that the rider
has a reduced perception of bicycle dynamics when riding the steer-by-wire bicycle in the
haptics off configuration. A comparison between the true roll rate and predicted roll rate
of the DOP and SDROP with internal model imperfections is presented in Figure 9(b).
The SDROPmanages to handle all model imperfections with high performance, while the
DOP predictions are oscillatory and lag behind compared to the true state estimates.

All results presented up to now, included feedback of steering angle and steering angle
rate. To assess the importance of these loops, we also simulated the SDROPmodel omitting
either or both feedback loops. Results in Table 5 (see Appendix V – Additional tables)
demonstrated a poor fit for the highest speeds, in particular when removing both feedback
loops.More specifically,VAFδ dropped fromapproximately 90 to 60%,VAFφ dropped from
80 to 26% and VAFψ dropped from 94 to 20%.

As a final step the simulated outputs of the SDROPmodel, which derive from the mod-
elling dataset, are compared with the non-parametric responses of the validation dataset.
The resulting VAFs are summarised in Table 6 (see Appendix V – Additional tables).
Even though the perturbations in the validation set occurred at slightly lower speeds than
the modelling dataset, most estimated VAFs are inline with those presented in the afore-
mentioned tables. The median rider responses obtained from the two datasets lead to
similar simulated responses and VAFs. To that end, all results described herein are justified
indicating high quality of the identified rider models.

6. Discussion

Experiments with a steer-by-wire bicycle and human rider models were used to investi-
gate human controlled bicycle balance and steering. The experiment explored the role of
haptic steering torque feedback and the rider models captured this dataset with feedback
loops for visuo/vestibular motion, steering torque, and steering angle feedback while tak-
ing into account sensory delays. The experiment showedmarginal effects of haptic steering
torque feedback on steering actions and bicycle motion. The rider models confirm that
human bicycle control can indeed be captured by a rider model without steering torque
feedback. This aligns with earlier models providing a good fit with rider models with-
out torque feedback for treadmill and gymnasium data [13] and for treadmill data [18].
However our models showed the best performance for the haptics on with Tδ feedback
configuration, with a VAF mostly over 90% for all speeds. Torque feedback gains could be
estimated with good accuracy supporting the relevance of torque feedback. The absence of
clear experimental effects of torque feedback can be explained by the model with reduced
Tδ feedback which is equivalent to the experimental haptics off condition. This feedback
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Figure 9. Comparison of true roll rate with simulated response of the DOP and SDROP predictors, (a)
without internal model imperfections, (b) with internal model imperfections.

only senses muscular torques acting on the steer inertia and does not sense any moments
resulting from bicycle dynamics including wheel inertia and road/tire interaction. Hence,
we tend to conclude that torque feedback is relevant but not dominant in bicycle balance
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and steering in the conditions studied. We focused on stabilisation on a straight and flat
bicycle lane and haptic steering torque may well be more relevant in other conditions.

Earlier models ignored sensory delays [13,18]. We investigated the role of sensory
delays using three control models varying presence of delays (ZD vs. SD) and prediction
(SDROP). Comprehensive analysis of the three control models indicated almost identi-
cal responses between the ZD and SDROP models. The minor differences between ZD
and SDROP can be explained as follows. The predictor can accurately estimate effects of
steering actions (efference copy) but only detects effects of external perturbations after the
sensory delay. This explains the small time delay between 20 and 80ms observed in the
predictions of the SDROP model. The SD model responses were more strongly delayed
compared to the actual measurements, with a delay between 20 and 120ms, due to sensory
delays and missing prediction capabilities, resulting in a reduced fit of the experimental
data. For the SDROP model omitting both steering angle δ and steering rate δ̇ had a nega-
tive effect on the fitting performance especially for the highest speeds. A large drop of about
70% was evident for VAFψ with a drop of about 50% for VAFφ and a drop of about 20%
for VAFδ . The higher degradation of the heading and roll VAFs indicates that handlebar
position and velocity feedback (muscle spindles) enhance bicycle heading and roll control
at higher speeds.

The gains for roll Kφ , Kφ̇ and heading Kψ are consistently negative for all models, con-
figurations and speeds. This is in full agreement with the basic bicycle balance mechanism:
to steer into the direction of the undesired fall [4]. The heading gain Kψ exhibits a consis-
tent trend, its magnitude increases with speed. This means that at higher speeds the rider
focus is shifted towards heading control.

6.1. Limitations and outlook

Neuromuscular dynamics of the arms in steering were described by a linear second-order
low pass filter in line with [28,29,32,33,37,38]. Feedback gains of the resulting steering
angle, steering velocity and steering torque were estimated and these three proprioceptive
feedback loops contributed to the fit of the experimental data supporting their relevance
in bicycle control. Non-linear Hill type muscle models separating agonist and antagonist
muscle groups can enhance model realism and allow study of muscular co-contraction
stiffening the arms, and compliance of hand to steering wheel contact and effects of arm
inertia can be explored [39]. Explicit modelling of cocontraction could separate intrinsic
from reflexive arm stabilisation. However, the additional parameters introduced by more
complex neuromuscular models, and their variation with task [29,37,38] will complicate
rider model parameter estimation and would ideally be supported bymore advancedmea-
surements and perturbations, for instance perturbing the steeringwheel in linewith studies
on the arm [28,29,32,33,37,38] and car steering [39].

We now assumed visual perception of body rotation in roll and yaw (heading) and
vestibular perception of body roll rate. These three motion feedback loops were essential
to obtain realistic results. Model realism can be enhanced integrating models of sensory
integration combining visual motion perception with vestibular perception of rotational
velocity by the semicircular canals and of acceleration combined with graviception by the
otoliths [40,41]. Such models use state estimation techniques and could be integrated with
predictors like the SDROP presented in this paper to deal with sensory delays.
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For all models the predicted magnitudes of the roll angle remained two to three times
smaller than the actual measured output (see Figure 6). During the experiments the
upper body remained unconstrained and acted as a double inverted pendulum with some
torsional spring and damping properties capturing lumbar bending and pelvis rotation.
Additional simulations with a passive pendulum model showed a much higher roll angle
of the bicycle when the rider is more compliant (see Figure 13 of Appendix IV – Effects of
rider body coupling analysed using a double pendulummodel). Such additional degrees of
freedom need further study measuring upper body kinematics and exploring passive and
active body stabilisation models, including rider control strategies using body lean to steer
and balance.

7. Conclusion

A dataset perturbing balance on a straight bicycle lane was collected and used to develop
rider-controlmodels at four driving speeds. In an effort to iterate over existing rider-control
models, a sensory delay reafferent optimal predictor model (SDROP) model has been cre-
ated that successfully accounts for sensory delays by the use of an internal forward model.
The sensory delay (SD) model has proven that implementation of sensory delays without
feedforward compensation does not produce results that match the experimental data. A
prediction strategy has been developed that manages to circumvent the inability of the
conventional Smith predictor to work on inherently unstable open loop systems. The rider
model is able to control the bicycle at all speeds and follows the necessary stability condi-
tion of steer into the fall. All simulated responses match the non-parametric outputs with
high level of performance, even when internal model inaccuracies are introduced.

With this ridermodel the importance of accurate determination of the various state vari-
ables via our body sensors has been examined. The analysis showed that a highly realistic
rider model besides lean angle, and lean velocity, must include steer angle, steer velocity
and torque feedback to obtain adequate performance at all speed levels. However, if the
torque feedback loop is severed and not disconnected as in the haptics off configuration,
state information might be deduced from the other state variables.
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Appendices

Appendix 1 – Abbreviations

PID proportional-integral-derivative feedback controller.
IMU inertial measurement unit.
IRF impulse response function.
FIR finite impulse response.
CV covariance coefficient.
VAF variance accounted for.
DOP discrete optimal predictor.
ZD zero delay.
SD sensory delay.
SDROP sensory delay reafferent optimal predictor.

Mathematical notations

δ steering angle.
φ roll angle.
φ̇ roll rate.
θ fork angle.
θ̇ fork rate.
δ̇ steer rate.
TPDH, TPDF handlebar and fork applied torques of PD controller.
KPH, KPF proportional handlebar and fork gains.
KDH, KDF derivative gains of the handlebar and fork.
v forward speed.
Tφ , Tδ roll and steer rider torques.
θR, θF rotation angle of the rear and front wheel.
θ̇R, θ̇F rotational angular rates of the rear and front wheel.
yP, yQ rear and front wheel contact points.
ψ heading (yaw) angle.
lg force moment arm coefficient measured from the ground.
cs denotes the force relationship between roll and steer angle.
yδ(t), yφ(t), yψ (t), yTδ(t) non-parametric output states of steer, roll, heading angle and steer

torque
ŷδ , ŷψ simulated disturbance output states.
Èşδk, Èşψ k, ÈşTδk absolute magnitude limits of steer, heading angle and steer torque.
τ time length of the impulse response function.
hδ(τ ), hφ(τ ), hψ (τ ), hTδ(τ ) impulse response functions of steer, roll, heading angle and steer

torque.
w(t) external input force.
Kφ̇ ,Kδ̇ ,Kφ ,Kδ ,Kψ ,KTδ roll, steer,heading angle and steer torque gains.

Appendices II–V

Appendix II – Bicycle and neuromuscular dynamics models Appendix III – Predictor compari-
son, Appendix IV - Effects of rider body coupling analysed using a double pendulum model and
Appendix V – Additional tables are available online here: https://doi.org/10.5281/zenodo.5818396
(Dialynas et al., 2019).

https://doi.org/10.5281/zenodo.5818396
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